Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Author "Wirzenius, Henrik"

Sort by: Order: Results:

  • Wirzenius, Henrik (2012)
    Amenability is a notion that occurs in the theory of both locally compact groups and Banach algebras. The research on translation-invariant measures during the first half of the 20th century led to the definition of amenable locally compact groups. A locally compact group G is called amenable if there is a positive linear functional of norm 1 in L^∞(G)^* that is left-invariant with respect to the given group operation. During the same time the theory of Hochschild cohomology for Banach algebras was developed. A Banach algebra A is called amenable if the first Hochschild cohomology group H^1(A, X^*) = {0} for all dual Banach A-bimodules X^*, that is, if every continuous derivation D : A → X^* is inner. In 1972 B. E. Johnson proved that the group algebra L^1(G) for a locally compact group G is amenable if and only if G is amenable. This result justifies the terminology amenable Banach algebra. In this Master's thesis we present the basic theory of amenable Banach algebras and give a proof of Johnson's theorem.