Browsing by discipline "Physics"
Now showing items 1-20 of 104
-
(2017)Accelerator mass spectrometry (AMS) is a technique developed from mass spectrometry and it is able to measure single very rare isotopes from samples with detection capability down to one atom in 10^16. It uses an accelerator system to accelerate the atoms and molecules to break molecular bonds for precise single isotope detection. This thesis describes the optimization of University of Helsinki's AMS system to detect the rare radioactive isotope 14C from CO2 gas samples. Using AMS to detect radiocarbon is a precise and fast way to conduct radiocarbon dating with minimal sample sizes. Solid graphite samples have been in use before but as the ion source has been adopted to use also gaseous CO2 samples, optimizations must be made to maximize the carbon current and ionization efficiency for efficient 14C detection. Parameters optimized include cesium oven temperature, CO2 flow, carrier gas helium flow and their dependencies with each other. Both carbon current and ionization efficiency is looked at in the optimizations. The results are analyzed and discussed for further optimizations or actual measurements with gas. Ionization occurring in the ion source can be understood better with the results. Standard samples of CO2 were measured to determine the background and precision of the AMS system in gas use by comparing the results with literature. The current system was found to have tolerable background of 1.5% of the standard and the Fraction modern value of actual sample was 2.4% higher than values from literature. Ideas to improve background were discussed. A new theory of negative-ion formation in a cesium sputtering ion source by John S. Vogel is reviewed and taken into account in the discussion of optimization. Utilizing the theory, possible future upgrades to improve the ionization efficiency are presented such as cathode material choices to reduce competitive ionization and cesium excitation by laser.
-
(2015)Fuusioreaktiossa kaksi kevyttä ydintä yhtyy yhdeksi raskaammaksi ytimeksi ja samalla vapautuu energiaa. Fuusioreaktio tarvitsee tapahtuakseen hyvin korkean lämpötilan, minkä seurauksena aine on olomuodoltaan plasmaa. Esimerkiksi fuusioreaktoreissa käytettäväksi suunniteltu vedyn isotooppien deuteriumin ja tritiumin välinen reaktio vaatii tapahtuakseen plasman kuumentamista yli 100 miljoonan kelvinin lämpötiloihin. Tutkituin fuusioreaktorimalli on tokamak, jossa kuumaa plasmaa hallitaan toruksen muotoisessa kammiossa voimakkaiden magneettikenttien avulla. Plasmaa koossapitävästä magneettikentästä huolimatta plasmasta karkaa hiukkasia, jotka lopulta osuvat kammion pinnoille. Yksi tapa kammion pintoihin kohdistuvan lämpö- ja hiukkasvuon pienentämiseksi on suihkuttaa kammioon epäpuhtausatomeja tai -molekyylejä jäähdyttämään reunaplasmaa. Typpi on osoittautunut kiinnostavaksi vaihtoehdoksi tähän tehtävään. Typen kulkeutuminen ja kertyminen reaktorikammion sisällä vaatii kuitenkin vielä lisätutkimuksia. Typen harvinainen isotooppi 15N tarjoaa mahdollisuuden tutkia näitä kysymyksiä. Tyypillisesti tämä tehdään merkkiainekokeiden avulla, jolloin reaktorikammioon suihkutetaan valittua merkkiainetta tunnetuissa olosuhteissa ja kokeen jälkeen selvitetään merkkiaineen jakauma reaktorikammion pinnoilla. Tässä työssä keskityttiin seinätiiliin, jotka on irrotettu ASDEX Upgrade -fuusioreaktorista (AUG) vuosien 2010-2011 koekampanjan jälkeen. Kyseisen koekampanjan lopussa suoritettiin 15N-merkkiainekoe. Työssä tutkittiin tiilistä porattujen näytteiden 15N-pitoisuuksia lentoaika-rekyylianalyysilla (Time Of Flight Elastic Recoil Detection Analysis, TOF-ERDA), ydinreaktioanalyysilla (Nuclear Reaction Analysis, NRA) ja sekundääri-ionimassaspektrometrialla (Secondary Ion Mass Spectrometry, SIMS). Vertailun vuoksi tutkittiin myös 15N:llä implantoituja testinäytteitä. Tutkielman alkuosassa esitellään lyhyesti tokamak-fuusioreaktorin toimintaa, plasman vuorovaikutusta reaktorin seinämän kanssa, typen käyttöä fuusioreaktoreissa, merkkiainekokeita sekä käytetyt mittausmenetelmät. Tutkielma loppuosa keskittyy suoritettuihin mittauksiin, niiden analyysiin ja tuloksiin sekä johtopäätöksiin. Tulosten perusteella mittausmenetelmien välillä on merkittäviä eroja AUG-näytteiden kohdalla, kun taas implantoiduille näytteille erot menetelmien välillä ovat pienet. Erot johtuvat todennäköisesti AUG-näytteiden epätasaisesta pintarakenteesta, minkä seurauksena typen jakauma näytteiden pintakerroksissa vaihtelee. TOF-ERDA:lla tutkittiin näytteistä mahdollisimman sileää pintaa luotettavan analyysin onnistumiseksi. NRA-mittauksissa protonisuihku kohdistui näytteen keskelle suuremmalle pinta-alalle. Suureen alueeseen sisältyy myös karkeampia kohtia, joihin merkkiaineen kertyminen on sileää pintaa suurempaa. Tämän seurauksena NRA:lla saadaan selvästi suurempia tuloksia 15N:n pintatiheydelle kuin TOF-ERDA:lla. Kvadrupolimassaspektrometrissa ilmenneiden ongelmien vuoksi SIMS-mittauksia suoritettiin vain yksi, minkä vuoksi optimaalisten asetusten löytäminen 15N:n mittaamiseen SIMS:llä vaatii vielä lisätutkimuksia.
-
(2016)The first order phase transition, the nucleation process, of a thermodynamic system is one of the basic physical phenomena and it has significant relevance on several scientific fields. Despite the importance of the nucleation process, the theoretical understanding is still imperfect. The emergence of a new phase, liquid or solid cluster, in the metastable gas phase is mainly treated with classical nucleation theory (CNT) by using known macroscopic thermodynamic properties of the studied substance, but the theory often fails in predicting the nucleation process adequately. The failure of describing the nucleation event by CNT has shifted the theoretical focus on molecular-level nucleation studies to improve the prediction and understanding of the origin of the failure. This thesis examines one of the key assumptions behind CNT, the constrained equilibrium hypothesis, by approaching it from statistical mechanics and thermodynamic point of view. The main tools in this work are computational: both Monte Carlo (MC) and molecular dynamics (MD) simulations have been used to simulate the homogeneous nucleation processes of Lennard-Jones argon. Two separate studies are presented: At first we compare the nucleation rates obtained by MC (based on thermodynamic equilibrium) and molecular dynamics simulations using the nonisothermal nucleation theory and then the constrained equilibrium hypothesis is invalidated by studying the kinetics of Lennad-Jones argon clusters from size of 4 up to 31 molecules at 50 K. In addition to the actual study, the thesis includes a systematic overview of the theoretical treatment of homogeneous nucleation from thermodynamic liquid drop model to applicable molecular-level simulation techniques.
-
(2014)The study of air ions by applying air balance concept based on the Hyytiälä SMEAR II station measurement was performed in this work. Diurnal and seasonal variations in ion concentration and environmental ionizing radiation were studied by analysing data collected from long-term measurements. Total gamma radiation was the main source for ion production in the atmosphere, which can be attenuated by snow cover during winter periods. α and β emissions from radon decay process showed a share of about 20% in the production of total ion pairs, which were sensitive to variations in soil conditions. In general, more positive ions than the negative ones exist at ground level due to the earth electrode effect. Similar patterns were found in cluster ion concentration and the ion source rate derived from the total gamma radiation. On days with new particle formation (NPF), a relation was observed between cluster ion concentration, wind speed, temperature (T) as well as relative humidity (RH). A similar connection was also identified in ion source rate and ion production rate to T and RH. A high ion source rate derived from gamma dose rate was observed on non-event days and low on NPF days. The reversed case was found in the source rate derived from radon decay emissions. The ion production rate was typically higher on NPF event days than on non-event days. Two approaches were carried out in the determination of the ion production rate in the cluster size range by using an improved balance equation of air ions. The similar values obtained using these two approaches imply a balanced condition between ionizing source and the observed ion concentration. This suggests that measurement of air ions by the Balanced Scanning Mobility Analyser (BSMA) is likely to be reliable, though accurate parameterization for sub-0.8 nm ions is not available to the present knowledge. Moreover, the ion production rate and formation rate were found incomparable.
-
(2012)Uusien hiukkaslaskurien kehitys on luonut tarpeen tuottaa aerosoleja alle kahden nanometrin kokoluokassa. Kahden nanometrin kokoisten aerosolien tuottaminen ei ole uusi asia, mutta kyseisessä kokoluokassa esimerkiksi hiukkasten varaaminen ja epäpuhtaudet ovat merkittävässä roolissa. Sen vuoksi tämän työn mittauksissa on mukana myös massaspektrometri, jota ei aikaisemmin ole hyödynnetty hiukkaslaskurien kalibroinneissa. Tässä työssä tavoitteena oli tuottaa ja karakterisoida puhdas alle kahden nanometrin kokoinen aerosoli. Aerosolin tuottamiseen käytettiin uunia, kuumalankageneraattoria ja elektrosprayta. Elektrospraylla tuotetut hiukkaset olivat itsestään varattuja, muut tuotetut hiukkaset varattiin Am241 varaajalla. Liikkuvuusanalysaattori oli korkean resoluution Herrmann DMA (differential mobility analyzer), joka valitsee näytteestä halutun kokoiset hiukkaset ja sen resoluutio on noin 20. DMA:n jälkeen näyte johdettiin kolmelle mittalaitteelle, jotka mittasivat rinnakkain. Massaspektrometri, APi-TOF (atmospheric pressure interface, time of flight mass spectrometer) on hiukkasen lentoaikaa mittaava instrumentti, johon voidaan näyte johtaa suoraan ilmakehän paineesta. APi-TOF:n rinnalla mittasi elektrometri, joka mittaa näytteen kokonaisvarauksen, sekä PSM, joka oli mittausten kalibroitava instrumentti. Vaihtelemalla DMA:lla valittua liikkuvuutta saatiin selville hiukkasten pitoisuus, PSM:n havaintotehokkuus sekä massaspektri koon funktiona. Ammoniumsulfaatin kemialliseksi koostumukseksi määritettiin (HSO4)x(NH3)ySO4- ja (HSO4)x(NH3)yH3SO4+, natriumkloridin (NaCl)x(massa 106)yCl- ja (NaCl)x(massa 106)yNa+ ja volframioksidin H0-2WyOz(massa 88)0-2-. Positiivsen volframioksidin kemiallista koostumusta ei pystytty selvittämään. Positiivisesti varatut ammoniumsulfaatti, natriumkloridi ja volframioksidi olivat alle 1.5 nm:n koossa kontaminoituneet orgaanisilla yhdisteillä. Hopeanäytteestä tunnistettiin klusterit Agx-, missä x=7, 17, 19 ja Agy(massa 224)+ ja HAgy(massa 224)+. y on pariton kun klusterissa ei ole vetyä ja parillinen vedyn kanssa. Hopeaspektri oli kuitenkin pääosin kontaminoitunut hopean ja orgaanisten epäpuhtauksien klustereilla. PSM:n leikkausrajoiksi määritettiin 1.3, 1.6, 1.7, ja 1.7 nm:a negatiiviselle natriumkloridille, ammoniumsulfaattille, volframioksidille ja hopealle vastaavasti. Kaikkien positiivisten orgaanisten näytteiden leikkausraja oli noin 1.8 nm.
-
Annoksen ja pinta-alan tulon (DAP) mittaaminen röntgendiagnostiikassa ja DAP-mittareiden kalibrointi (Helsingin yliopistoUniversity of HelsinkiHelsingfors universitet, 2004)Annoksen ja pinta-alan tuloa (DAP, dose-area product) mittaavaa DAP-mittaria käytetään röntgendiagnostiikassa potilaan säteilyaltistuksen määritykseen. DAP-mittari on läpäisytyyppinen, tasomainen ionisaatiokammio, jolla voidaan mitata samanaikaisesti potilastutkimuksen kanssa. Röntgenlaitteessa oleva DAP-mittari tulisi kalibroida siten, että mittaustuloksena saadaan annoksen ja pinta-alan tulo potilaaseen kohdistuvassa säteilykeilassa. Mittareita voidaan kalibroida erilaisilla menetelmillä, mutta usein on tyydytty käyttämään mittarin valmistuksen yhteydessä tehtyä kalibrointia. Tässä työssä oli tarkoitus kehittää DAP-mittareille yhtenäinen ja toimiva kalibrointimenettely, jonka avulla mittaukset ovat jäljitettävissä kansainväliseen mittausjärjestelmään. Uudessa kalibrointimenettelyssä käyttöpaikalla suoritettava kalibrointi tehdään kalibroidulla DAP-mittarilla (vertailumittarilla), joka on säteilykeilassa samanaikaisesti kalibroitavan mittarin kanssa. Säteilyn käyttöpaikalla kalibroinnissa tarvittavat vertailumittarit kalibroidaan Säteilyturvakeskuksen (STUK) mittanormaalilaboratoriossa. Menetelmän kehittelyä varten DAP-mittareita tutkittiin laboratorioon rakennetulla mittausjärjestelyllä, jossa selvitettiin niiden toimintaa ja kalibrointiin vaikuttavia tekijöitä. Vertailumittarin kalibrointia varten tutkittiin kahta menetelmää, joissa todellinen annoksen ja pinta-alan tulo määritetään joko mittaamalla kalibroidulla DAP-mittarilla tai laskemalla ilmaan absorboituneen annoksen ja säteilykeilan poikkileikkauksen pinta-alan mitattujen arvojen tulo. Kahdella eri menetelmällä mitatut DAP-arvot poikkeavat useita prosentteja toisistaan. Aikaisempien tutkimuksien ja omien mittausten perusteella päätettiin, että vertailumittareiden kalibroinnissa käytetään mittanormaalina laboratorion kalibroitua DAP-mittaria. Kehitetyn menetelmän avulla mittanormaalilaboratoriossa kalibroitiin viisi vertailumittaria. Yhden vertailumittarin avulla kalibroitiin diagnostisten röntgenlaitteiden DAP-mittareita niiden omilla käyttöpaikoilla sairaalassa. Mittauksissa huomattiin, että tavanomainen paine- ja lämpötilakorjaus korjaa mittareiden näyttämää hieman liikaa. Siksi olosuhteiden vaihtelut vaikuttavat korjattuihin mittaustuloksiin ja kalibroinnin epävarmuuteen enemmän kuin aikaisemmin on arvioitu.
-
(2017)Tässä työssä tarkastellaan annoksen ja pinta-alan tulon mittarin (DAP-mittarin) toimintaa ja käyttäytymistä pienissä säteilyannoksissa, jossa DAP-arvot ovat matalia. Lasten tutkimuksissa käytetään pieniä kuvausarvoja, jonka seurauksena lapsipotilaaseen kohdistuu matalia annoksia. Lasten thorax-tutkimuksissa potilaaseen kohdistuva keskimääräinen DAP-arvo on 19 mGy x cm^2. DAP-arvon tarkkuus matalissa annoksissa on tärkeä, sillä lapsuudessa saatu säteilyaltistus aiheuttaa suuremman riskin kuin vastaava altistus aikuisiässä. Lapset ovat säteilysuojelun kannalta erityisasemassa ja lasten tutkimusten oikeutusharkintaan ja optimointiin tulee kiinnittää erityistä huomiota. Tutkimuksessa DAP-mittarin tarkkuutta matalissa annoksissa tarkasteltiin käyttäen pinta-ala menetelmän kalibrointia. Kalibrointi tapahtui siten, että DAP-mittareita käytettiin kenttämittareina ja Raysafe Xi-annosmittaria vertailumittarina. Toisin sanoen DAP-mittarista saatuja arvoja tarkasteltiin vertaamalla niitä Raysafe Xi-annosmittarin arvoihin. DAP-mittari on kiinnitetty röntgenputken eteen ja pinta-ala menetelmässä annosmittari asetetaan röntgenputken alapuolelle säteilykeilaa vasten. Tällöin kuvaamisessa molemmat mittarit altistuvat säteilylle samanaikaisesti. Tulokseksi saatiin, että DAP-mittarit ovat kalibroitu korkean kuvausjännitteen, sähkömäärän ja ilman lisäsuodatuksen avulla, eikä kalibroinnissa ole otettu huomioon matalia annoksia. Tutkimalla DAP-mittarin tarkkuutta matalissa annoksissa huomattiin, että DAP-mittaria koskeva laitevaatimus, jossa näyttämä saa poiketa oikeasta arvosta enintään 25 %, ei toteudu AGFA DX-D600 ja FUJI FDR Acselerate röntgenlaitteella DAP-arvon ollessa 0-4 mGy x cm^2 välillä. Tällöin näiden kahden röntgenlaitteiden DAP-mittareista saadut DAP-arvot eivät ole luotettavia DAP-arvojen ollessa alle 4 mGy times cm^2.
-
(2012)Graphene is the ultimately thin membrane composed of carbon atoms, for which future possibilities vary from desalinating sea water to fast electronics. When studying the properties of this material, molecular dynamics has proven to be a reliable way to simulate the effects of ion irradiation of graphene. As ion beam irradiation can be used to introduce defects into a membrane, it can also be used to add substitutional impurities and adatoms into the structure. In the first study introduced in this thesis, I presented results of doping graphene with boron and nitrogen. The most important message of this study was that doping of graphene with ion beam is possible and can be applied not only to bulk targets but also to a only one atomic layer thick sheet of carbon atoms. Another important result was that different defect types have characteristic energy ranges that differ from each other. Because of this, it is possible to control the defect types created during the irradiation by varying the ion energy. The optimum energy for creating a substitution for N ion is at about 50 eV (55%) and for B ion it is ca. 40% at about the same energy. Single vacancies are most probably created at an energy of about 125 eV for N (55%) and for B at ca. 180 eV (35%). For double vacancies, the maximum probabilities are roughly at 110 eV for N (16%) and at 70 eV for B (6%). The probabilities for adatoms are the highest at very small energies. A one atom thick graphene membrane is reportedly impermeable to standard gases. Hence, graphene's selectivity for gas molecules trying to pass through the membrane is determined only by the size of the defects and vacancies in the membrane. Gas separation using graphene membranes requires knowledge of the properties of defected graphene structures. In this thesis, I presented results of the accumulation of damage on graphene by ion irradiation using MD simulations. According to our results, graphene can withstand up to 35% vacancy concentrations without breakage of the material. Also, a simple model was introduced to predict the influence of the irradiation during the experiments. In addition to the specific results regarding ion irradiation manipulation of graphene, this work shows that MD is a valuable tool for material research, providing information on atomic scale rarely accessible for experimental research, e.g., during irradiation. Using realistic interatomic potentials MD provides a computational microscope helping to understand how materials behave at the atomic level.
-
(2012)The most important parameters describing the aerosol particle population are the size, concentration and composition of the aerosol particles. The size and water content of the aerosol particles are dependent of the relative humidity of the ambient air. Hygroscopicity is a measure to describe the water absorption ability of an aerosol particle. Volatility of an aerosol defines how the aerosol particles behave as a function of temperature. A Volatility-Hygroscopicity Tandem Differential Mobility Analyzer (VH-TDMA) is an instrument for size-selected investigation of particle number concentration, volatility, hygroscopicity and the hygroscopicity of the particle core, i.e. what is left of the particle after the volatilization. While knowing these qualities of aerosol particles, one can predict their behavior in different atmospheric conditions. Volatility and hygroscopicity can also be used for indirect analysis of chemical composition. The aim of this study was to build and characterize a VH-TDMA, and report the results of its field deployment at the California Nexus (CalNex) 2010 measurement campaign. The calibration measurements validated that with the VH-TDMA one can obtain accurate volatility and hygroscopicity measurements for particles between 20 nm and 145 nm. The CalNex 2010 results showed that the instrument is capable in field measurements at varying measurement conditions; and valuable data about hygroscopicty, volatility and the mixing state of several types of aerosols were measured. The data obtained was in line with the observations based on the data measured with other instruments.
-
(2017)As the data traffic, as well as the speed demands, increases, the mobile networks require means for economically fulfil these demands. The solution comes from the cloud. In order to move the processing to the cloud, it must be carefully dimensioned to know how much resources each situation requires. This means there must be a way to calculate from the traffic the virtual machines required and the hardware resources the virtual machines need, when the cloud infrastructure used is OpenStack. This thesis provides two methods for calculating the virtual machines from the traffic profile. The first one is based on performance testing of the virtual network functions and the second one is based on machine learning technique called multiple linear regression analysis. Furthermore in this work, approximation algorithms are being used in order to solve multidimensional variates of classical optimization problems such as bin packing problem and subset sum problem. These algorithms are used to dimension required resources from the virtual machines to hardware and vice versa. The algorithms are bundled to a program with a graphical user interface to make as user friendly as possible.
-
(2015)In the upgraded CMS pixel detector (phase II upgrade), the pixel size will become smaller due to the higher occupancy caused by higher luminosity of the LHC. This means that also the bump bonds between the sensor and the read-out circuit will become smaller, which results in smaller gap between the sensor and the ROC. This will increase the probability for electrical sparking that might destroy the ROC, the sensor or both. Jaakko Härkönen has suggested using alumina passivation on the modules for sparking prevention. In this thesis it was studied whether bonding is applicable on a surface having an alumina passivation. It was also of interest, which parameters of the bonder make stronger bonds. Bonding was tested on metal pads with different layer thicknesses of alumina: 0 nm, 10 nm, 15 nm, 20 nm and 25 nm. The strengths of the bonds were tested using the bond pull test. The results indicate that wire-bonding on alumina does well in pull-strength tests, though the bonds are slightly weaker than on surfaces with no alumina. Increasing bonding force seems to weaken the bonds, increasing bonding power, on the other hand seems to make stronger bonds. The conclusion of this thesis is that alumina is a viable choice for passivation, since it does not seem to have a negative effect on the module wire bonding.
-
(2016)Freshwaters are a source of carbon to the atmosphere in the form of methane (CH4) and carbon dioxide (CO2). Global estimates of the freshwater contribution to the carbon budget are often based on a water boundary layer model (BLM) with gas transfer coefficient k calculated depending solely on wind speed. According to comparison studies, this model gives underestimated emissions and should not be used for more reliable results. A widely used flux measurement method over lakes is the floating chamber (FC) method. FC measures surface flux from a very small area of the lake, so it may not be representative of the whole ecosystem. Measurements are relatively cheap and easy, but also laborious and sporadic. Instead of measuring just a specific point on the lake, eddy covariance (EC) technique provides continuous flux measurements over a much larger source area (footprint). EC systems have been widely used over land areas, but are now growing their popularity in the lake community as well. The aim of this study was to compare EC, FC and BLM methods for CO2 and CH4 fluxes over a boreal lake. The measurements were made at a small dimictic Lake Kuivajärvi in Hyytiälä (Juupajoki, Southern Finland) during an intensive field campaign in September 2014. Manual FC measurements were done at four measurement spots in the EC footprint area 2-3 times a day for catching spatial and temporal variability. Gas transfer velocity for BLM was calculated according to three different parametrizations. Results indicate that BLM fluxes calculated based on water convection and wind driven turbulent gas exchange compare quite well with EC measurements while the model based solely on wind speed is a clear underestimate. FC measurements show about 1.7 times larger flux values than EC. The comparison is more clear for CH4 than CO2 fluxes. The greatest values of CH4 fluxes were measured near the shore, while CO2 flux did not show any spatial variability. After the lake started its autumn mixing, CH4 flux showed a diurnal variation with highest values measured during daytime. There was no diurnal variation before mixing. CO2 flux on the other hand showed diurnal variation only when calculated according to the BLM method.
-
(2012)Ioninesteet ovat suoloja, joilla on matala sulamislämpötila (alle noin 100 °C). Niillä on useita hyödyllisiä ominaisuuksia ja lukuisia mahdollisia sovelluksia. Tarkempi tieto ioninesteiden atomitason rakenteesta on kuitenkin tärkeää niiden ominaisuuksien ja mahdollisuuksien ymmärtämiseksi sekä sovellusten kehittämiseksi. Tässä työssä tutkittiin 1-3-dimetyyli-imidazoliumkloridia ([mmim]Cl), joka on molekyylimassaltaan kevyt prototyyppinen ionineste. Tässä tutkielmassa hyödynnettiin epäelastista röntgensirontaa uuden informaation saamiseksi. Epäelastisessa röntgensironnassa fotoni siroaa elektronisysteemistä luovuttaen sekä energiaa että liikemäärää. Fotonin epäelastista sirontaa kutsutaan Compton-sironnaksi, kun energian- ja liikemääränsiirto on suuri. Compton-sirontaa voidaan käyttää aineen atomi- ja molekyylitason rakenteen tutkimisessa, sillä Compton-sirontakokeissa määritettävä suure, Compton-profiili, on herkkä atomien välisen geometrian muutoksille. Mittaustulosten tulkinta on kuitenkin haastavaa ja laskennallisella mallintamisella on siinä suuri rooli. Tässä tutkielmassa laskettiin [mmim]Cl:n neste- ja kidefaasien isotrooppisten Compton-profiilien erotus (erotusprofiili). Tiettyjen oletusten ollessa voimassa Compton-profiili riippuu elektronien liikemäärätiheydestä, joten profiilit voidaan määrittää aineen perustilaa kuvaavien elektronirakennelaskujen avulla. Tässä tutkielmassa elektronirakennelaskuissa käytettiin Kohn-Sham-tiheysfunktionaaliteoriaa, periodisia reunaehtoja ja Gaussisia kantajoukkoja elektronitiloille. Lisäksi laskennan tarkkuuteen vaikuttavia tekijöitä arvioitiin. Liikemäärähilan tiheydellä sekä vaihto-korrelaatiofunktionaalin ja kantajoukon valinnalla havaittiin olevan suuri vaikutus laskettuun erotusprofiiliin. Nämä tekijät olivat selkeästi merkittävämpiä kuin nesterakenteiden äärellisestä määrästä johtuva tilastollinen epätarkkuus. Erotusprofiilin tulkitsemiseksi kiderakenteesta otettuun yhteen [mmim]Cl-ionipariin tehtiin muutoksia käytetyn nesterakenteen perusteella ja tarkasteltiin näiden muutosten vaikutusta Compton-profiiliin. Sekä molekylääristen ionien sisäisen rakenteen että ionien välisen geometrian muutosten havaittiin vaikuttavan merkittävästi laskettuun erotusprofiiliin. Tässä työssä esitetyt tulokset auttavat kokeellisen erotusprofiiliin tulkinnassa ja selittämisessä.
-
(2017)Cytochrome bc1, also known as complex III, is the third enzyme of the electron transfer chain in cellular respiration, which is the main process generating energy in living cells. Complex III operates by oxidizing ubiquinol, and transferring two electrons to cytochrome c, while reducing ubiquinone. The electron transfer is coupled to proton translocation across the inner mitochondrial membrane. Thus, complex III contributes to generation of a proton electrochemical gradient, which is required for the function of ATP synthase. Cardiolipins (CLs), constituting up to 20 mol % of lipids in the inner mitochondrial membrane, have an important role in the structure and dynamics of the membrane, as well as in maintaining the correct function of the whole electron transfer chain. Cardiolipins are especially vulnerable to oxidation by reactive oxygen species (ROS) due to their dimeric structure with four doubly unsaturated acyl chains. Cytochrome bc1 is one of the main producers of ROS in mitochondria, increasing the exposure of tightly bound CLs to oxidation. Oxidative stress and CL oxidation have been associated with, for instance, programmed cell death and aging, and developing Alzheimer's and Parkinson's diseases. The objective of this thesis was to build a new computational model of cytochrome bc1 in a membrane, and to study the lipid interactions of complex III using atomistic molecular dynamics simulations. A model system with a high-resolution structure of complex III, embedded in a multicomponent bilayer mimicking the inner mitochondrial membrane was constructed. Four atomistic simulations of 1 μs each were performed to reveal possible cardiolipin binding sites and to examine the effects of CL oxidation on the complex. Altogether, eight CL binding sites on cytochrome bc1 were found, out of which two have not been suggested previously. The key residues of each binding site were listed, to compare with earlier results, and to identify the new binding sites in detail. In order to investigate the effects of CL oxidation, carboxylic acid and hydroperoxyl groups were attached to the acyl chains of three crystallographically resolved CLs. The oxidized region of the CL tails changed the nature of interactions with the protein and the surrounding water. As the tail was oxidized, the results showed an increase in the number of water molecules surrounding it. Additionally, the oxidized tails were found to affect the configuration of CL by bending the tail towards the lipid headgroup, or by reaching out to the water interface of the opposite leaflet. Normally, the acyl chains of CL mostly interact with the nonpolar residues of the protein. After oxidation, the number of polar and charged amino acids in the vicinity of the acyl chain increased.
-
(2016)Ion interaction with matter plays an important role in the modern silicon based micro- and nanoindustry. Ions accelerated to significant energies are able to penetrate into materials allowing for controlled tailoring of the materials' properties. However, it is extremely important to understand the nature of these interactions, and computer modelling is by far the most suitable technique for this purpose. The models used in ion irradiation software are either based on the binary collision approximation (BCA) or molecular dynamics (MD). The first mentioned is both the oldest and the most widely used one. There are three reasons for this: the simple idea, the fast calculation speeds, and the user-friendly graphical user interfaces distributed with the codes. However, there are still some pitfalls in accuracy compared to MD. MDRANGE, an ion range MD code, developed at the Accelerator Laboratory of the University of Helsinki, combines the accuracy of MD with the speed of the BCA. If the tool is given a graphical user interface, it would become more appealing to scientists not familiar with programming. Different methods and techniques for calculating the penetration depths and ranges of kinetic ions in solids are presented in this work. They are accompanied by an overview of the mathematics allowing them to be as physically accurate as possible, over reasonable computation times. For both BCA and MD, generally, the computationally most demanding part is the calculation of the interactions between two or more particles. These interactions are handled through evaluation of potential functions developed especially for different combinations of atoms. The graphical user interface developed in this work is meant as a robust setup tool for use with MDRANGE. The separation of parameters into different panels and the main functionality of the different parts are presented in detail. It is possible to generate the three mandatory input files (coords.in, elstop.in, and param.in) with the tool. Out of these three files, param.in is the file in main focus when the application is used. In addition to the generation of the three files, there are also functions included for investigating range calculation results in real time during simulations. During the last five decades, there has been a huge development of the simulation models intended for ion irradiation processes. Even though BCA models excel in speed, they are not able to compete with MD in simulating many-body interactions for atoms with kinetic energies lower than 1 keV. MDRANGE was developed as a bridge between the two models to allow for faster MD calculations, comparable to BCA calculations, while still taking into account the many-body interactions for ions with lower speeds. With the graphical user interface, developed in this work, it will become even more appealing to scientists not familiar with programming, but still in need of an ion range calculation software.
-
(2017)Tässä työssä kehitettiin SQUID-pohjainen laitteisto helium-3:lla tehtäviä NMR-mittauksia varten ja suoritettiin mittauksia sekä nk. jatkuvan aallon (continous wave) NMR:llä että pulssitetun aallon (pulsed wave) menetelmällä. Helium-3:n korkean hinnan (n. 5000 euroa/litra) takia työssä käytettiin testitarkoituksiin NMR-materiaaleina myös fluoria sisältävää teflonia ja vetyä sisältävää jäätä. Laitteisto suunniteltiin ja rakennettiin Aalto-yliopiston O.V. Lounasmaa -laboratoriossa, nykyiseltä nimeltään Low Temperature Laboratory. NMR eli ydinmagneettinen resonanssi on ilmiö jossa ydinspinilliset atomiytimet sijoitetaan staattiseen magneettikenttään ja viritetään niitä ulkoisella sähkömagneettisella säteilyllä, jonka jälkeen niiden viritystila purkautuu vapauttaen NMR-signaalin. Tällä tavalla pystytään tutkimaan monia aineen eri ominaisuuksia. SQUID eli Superconducting Quantum Interference Detector taas on nimensä mukaisesti kvantti-interferenssiin perustuva laite, joka kykenee havaitsemaan erittäin pieniä magneettikenttiä. NMR:n yhteydessä se on tehokas esivahvistin, jonka avulla voidaan havaita hyvin pieniäkin signaaleja. Tässä työssä sillä on tarkoitus parantaa signaali-kohinasuhdetta verrattuna perinteisiin puolijohde-esivahvistimiin ja saada aikaan ilmaisin jolla voidaan mitata myös matalammilla taajuuksilla kuin tutkimusryhmällä on nykyisin käytössä. Suoritettujen mittausten perusteella laitteisto kykeni havaitsemaan NMR-signaalin jatkuvan aallon menetelmällä jokaisesta tutkitusta aineesta. Pulssitettuja mittauksia ei vielä toistaiseksi onnistuttu tekemään onnistuneesti johtuen heliumin pitkähköstä, n. 30 sekunnin, relaksaatioajasta joka teki pidemmistä mittaussarjoista vaikeita toteuttaa. Vastaavasti kahdella kiinteällä aineella, teflonilla ja jäällä, resonanssin leveys oli niin suuri että energian absorbointi pulsseilla näytteeseen olisi hankalaa ja tuottaisi signaaleja joiden pienuus tekisi niistä hankalasta havaittavia, joten näitä aineita tutkittiin tässä työssä vain jatkuvan aallon menetelmällä.
-
(2016)Helium has two stable isotopes: more common 4He with four nucleons, and the very rare 3He with three nucleons. At sufficiently low temperature, helium can become superfluid that has no viscosity. This transition is quantum mechanical in nature, and since bosonic 4He and fermionic 3He follow different quantum statistics, there is a significant difference in the transition temperature between them. It is about 2 K for pure 4He, but for pure 3He it is three orders of magnitude lower, around 1 mK. 3He – 4He mixtures also have several interesting properties at very low temperatures, such as the finite solubility of 3He in 4He even at absolute zero limit. However, at kelvin range, where our experiment took place, the notable feature is the shifting of the supefluid transition temperature of 4He to a lower temperature due to addition of 3He. Bulk superfluid helium can support two different sound modes: first sound is ordinary pressure (or density) wave, whereas second sound is a temperature (or entropy) wave, unique to superfluid systems. In inviscid superfluid systems, temperature fluctuations can propagate as second sound wave, but in normal systems, on the other hand, this is not possible, as all temperature fluctuations are strongly damped. First sound and second sound do not usually exist independent of each other, rather pressure variations are accompanied by variations in temperature, and vice versa. In this thesis, we studied experimentally the coupling between first and second sound in dilute 3He - superfluid 4He mixtures, at saturated vapor pressure, at temperatures between 2.2 K and 1.7 K, and at 3He concentrations ranging from 0 % to 11%, using a quartz tuning fork mechanical oscillator. Second sound that is coupled to first sound can create anomalies in the resonance response of the quartz tuning fork, so-called second sound resonances. We learned that there exists a temperature and concentration region, where these anomalies disappear, which would indicate two sound modes decoupling from each other. We also present a hydrodynamical model that correctly predicts the decoupling behavior.
-
(2015)Electrical breakdowns occasionally occur near the first walls of fusion reactor chambers and the accelerating cavities of linear colliders, such as CLIC. These arcing events are localised plasma discharges, which are formed under high voltage electrical fields. Vacuum arcs cause various surface damage on the fusion reactor and linear accelerator structures. The surface damage, most significantly craters, have been studied experimentally, but the mechanism of the formation of this damage is still not clear. In this thesis we use the large-scale molecular dynamics simulations to study crater formation on Cu surface. We used ion irradiation to model the arcing events, where plasma ions are accelerated via the shield potential towards the metal surface. This ion irradiation causes multiple overlapping cascades in Cu surface, what can lead to the crater formation. The main goal was to be able to produce surface damage, which is identical to experimental results. Our results are divided to three categories. First we examined which are initial conditions needed to form experimental like craters. The electric field emission current accompanying the plasma discharge process, most likely, is to heat the sample locally to very high temperatures. Therefore we tested molten and solid structures at different temperatures, as well as different scenarios of cooling of the sample via electronic heat conduction. Second, we examined how different variables, such as the fluence of the ions, the energy flux or the potential model, affect on the crater shape. These results were compared with the experimental crater profiles in order to find out reasonable values. We also analysed how the volume of the produced crater depends on fluence. Our third part of investigation was not actually concentrated on the surface damage, but on dislocations and other damage under the surface. We again studied how different parameters affect on the results. We compared the simulations by calculating the number and ratio of non-FCC atoms in the bulk. The fluence dependency of the defects was studied as well.
-
(2013)Creep is time dependent plastic malformation of solids, that happen in static stress and temperature when threshold values are met. Creep occurs at high temperature, meaning temperature more than 30% of material's absolute melting temperature (this limit is a little lower with plastics, and higher in ceramics). The malformations it causes can lead to rupture, which usually happen in a short time compared to the duration of the whole process. The creep effect itself is known from already the 19th century, and for metals it's quite clear that diffusion is always present in creep (Coble and Nabarro-Herring creep), and that dislocations can increase the rate of creep strain. Effects of creep can be seen e.g. in power plants and engines, where turbine blades, turbines, pipes and vessels are all the time at high temperature and stress. Also creep relaxation is often 'loosening' bolts which needs to be retightened. In regular office creep can be seen in paper clips, especially in plastic ones, which relax and lose grip fast because of the low melting point of plastics. Creep, because it usually needs long time to be visible, has been part of accidents, too, e.g. in '9/11'. Creep appears in 3 stages (primary (transient), secondary (steady-state), tertiary), and depending on the application, either secondary or tertiary is the most important one. The secondary creep is important for displacement-, buckling- and relaxation-limited situations, and tertiary for the rupture-limited ones.
-
(2015)X-ray computed tomography (CT) is widely used in medical imaging and materials science. In this imaging modality, cross-sectional images of a physical object are formed by taking numerous X-ray projections from different angles and then applying a reconstruction algorithm to the measured data. The cross-sectional slices can be used to form a three-dimensional model of the interior structure of the object. CT is a prime example of an inverse problem, in which the aim is to recover an unknown cause from a known effect. CT technology continues to develop, motivated by the desire for increased image quality and spatial resolution in reconstructions. In medical CT, reducing patient dose is a major goal. The branch of CT known as X-ray microtomography (micro-CT) produces reconstructions with spatial resolutions in the micrometer range. Micro-CT has been practiced at the University of Helsinki since 2008. The research projects are often interdisciplinary, combining physics with fields such as biosciences, paleontology, geology, geophysics, metallurgy and food technology. This thesis documents the design and construction of a new X-ray imaging system for computed tomography. The system is a cone beam micro-CT scanner intended for teaching and research in inverse problems and X-ray physics. The scanner consists of a molybdenum target X-ray tube, a sample manipulator, and a flat panel detector, and it is built inside a radiation shielding cabinet. Measurements were made for calibrating the measurement geometry and for testing reconstruction quality. Two-dimensional reconstructions of various samples were computed using the plane which passes through the X-ray point source and is perpendicular to the axis of rotation. This central plane of the cone beam reduces to fan beam geometry. All reconstructions were computed using the filtered backprojection (FBP) algorithm, which is the industry standard. Tomographic reconstructions of high quality were obtained from the measurements. The results show that the imaging system is well suited for CT and the study of reconstruction algorithms.
Now showing items 1-20 of 104