Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "Fourier analysis"

Sort by: Order: Results:

  • Laukkarinen, Aapo (2022)
    In this thesis we study the article by J. Bourgain and C. Demeter called A study guide for the l^2 decoupling theorem. In particular, we hope to give an in detail exposition to certain results from the aforementioned research article so that this text combined with the master’s thesis On the l^2 decoupling theorem by Jaakko Sinko covers the l^2 decoupling theorem comprehensively in the range 2 ≤ p ≤ 2n/(n−1). The results in this text also self-sufficiently motivate the use of the extension operator and explain why it is possible to prove linear decouplings with multilinear estimates. We begin the thesis by giving the basic notation and highlighting some useful results from analysis and linear algebra that are later used in the thesis. In the second chapter we introduce and prove a certain multilinear Kakeya inequality, which asserts an upper bound for the overlap of neighbourhoods of nearly axis parallel lines in R^n that point in different directions. In the next chapter this is applied to prove a multilinear cube inflation inequality, which is one of the main mechanisms in the proof of the l^2 decoupling theorem. In the fourth chapter we study two forms of linear decoupling. One that is defined by an extension operator and one that defined via Fourier restriction. The main result of this chapter is that the former is strong enough to produce decoupling inequalities that are of the latter form. The fifth chapter is reserved for comparing linear and multilinear decouplings. Here we use the main result of the previous chapter to prove that multilinear estimates can produce linear decouplings, if the lower dimensional decoupling constant is somehow contained. This paves the way for the induction proof of the l^2 decoupling theorem.
  • Sinko, Jaakko (2020)
    The purpose of this thesis is to act as a guide for the 2017 article A study guide for the l^2 decoupling theorem by J. Bourgain and C. Demeter. However, this thesis is self-sufficient. The aim has been to give a detailed presentation and handle the weight exponent E especially carefully in the arguments. We begin by presenting the decoupling inequality of the l^2 decoupling theorem and the associated Fourier transform -like operator. The theorem concerns finding a satisfactory upper bound for the decoupling constant related to the inequality. We also list some general results that a graduate student might not be very familiar with; among them are a few consequences of Hölder's inequality. We move on to study the properties of the weight functions that we use in the L^p-norms in the decoupling. We present two operator lemmas to which we can reduce many of our arguments. The other lemma gives us the opportunity to use certain Schwartz functions in our proofs. We then move on to prove the l^2 decoupling theorem in the lower range 2<= p <= (2n)/(n-1). This includes the definition of multilinear decoupling constants and an iterative process.
  • Koivurova, Antti (2021)
    This thesis surveys the vast landscape of uncertainty principles of the Fourier transform. The research of these uncertainty principles began in the mid 1920’s following a seminal lecture by Wiener, where he first gave the remark that condenses the idea of uncertainty principles: "A function and its Fourier transform cannot be simultaneously arbitrarily small". In this thesis we examine some of the most remarkable classical results where different interpretations of smallness is applied. Also more modern results and links to active fields of research are presented.We make great effort to give an extensive list of references to build a good broad understanding of the subject matter.Chapter 2 gives the reader a sufficient basic theory to understand the contents of this thesis. First we talk about Hilbert spaces and the Fourier transform. Since they are very central concepts in this thesis, we try to make sure that the reader can get a proper understanding of these subjects from our description of them. Next, we study Sobolev spaces and especially the regularity properties of Sobolev functions. After briefly looking at tempered distributions we conclude the chapter by presenting the most famous of all uncertainty principles, Heisenberg’s uncertainty principle.In chapter 3 we examine how the rate of decay of a function affects the rate of decay of its Fourier transform. This is the most historically significant form of the uncertainty principle and therefore many classical results are presented, most importantly the ones by Hardy and Beurling. In 2012 Hedenmalm gave a beautiful new proof to the result of Beurling. We present the proof after which we briefly talk about the Gaussian function and how it acts as the extremal case of many of the mentioned results.In chapter 4 we study how the support of a function affects the support and regularity of its Fourier transform. The magnificent result by Benedicks and the results following it work as the focal point of this chapter but we also briefly talk about the Gap problem, a classical problem with recent developments.Chapter 5 links density based uncertainty principle to Fourier quasicrystals, a very active field of re-search. We follow the unpublished work of Kulikov-Nazarov-Sodin where first an uncertainty principle is given, after which a formula for generating Fourier quasicrystals, where a density condition from the uncertainty principle is used, is proved. We end by comparing this formula to other recent formulas generating quasicrystals.
  • Laarne, Petri (2021)
    The nonlinear Schrödinger equation is a partial differential equation with applications in optics and plasma physics. It models the propagation of waves in presence of dispersion. In this thesis, we will present the solution theory of the equation on a circle, following Jean Bourgain’s work in the 1990s. The same techniques can be applied in higher dimensions and with other similar equations. The NLS equation can be solved in the general framework of evolution equations using a fixed-point method. This method yields well-posedness and growth bounds both in the usual L^2 space and certain fractional-order Sobolev spaces. The difficult part is achieving good enough bounds on the nonlinear term. These so-called Strichartz estimates involve precise Fourier analysis in the form of dyadic decompositions and multiplier estimates. Before delving into the solution theory, we will present the required analytical tools, chiefly related to the Fourier transform. This chapter also describes the complete solution theory of the linear equation and illustrates differences between unbounded and periodic domains. Additionally, we develop an invariant measure for the equation. Invariant measures are relevant in statistical physics as they lead to useful averaging properties. We prove that the Gibbs measure related to the equation is invariant. This measure is based on a Gaussian measure on the relevant function space, the construction and properties of which we briefly explain.