Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "lämpötila"

Sort by: Order: Results:

  • Koskela, Elina (2019)
    Tiivistelmä/Referat – Abstract This study investigates temperature data that Posiva Oy has from the Olkiluoto and ONKALO® sites. The aim of the study was to create a unifying data classification for the existing temperature measurements, give an estimate of the initial undisturbed bedrock temperature and temperature gradient and model the temperature profiles in 3D. The thermal related issues, which the repository will undergo once in operating are significant and have fundamental contribution to the evolution of the repository, creating a need in such a study. Posiva Oy has temperature data obtained with four main methods; Geophysical drillhole loggings, Posiva flow log (PFL) measurements, thermal properties (TERO) measurements and Antares measurements. The data classification was carried out by creating a platform of quality aspects affecting the measurements. The classification was then applied for all the available data by inspecting the measurement specifics of each configuration and by observing the temperature/depth profiles with WellCad software. According to the specifics of each individual measurement the data was classified into three groups: A= the best data, recommended for further use, and which fulfils all quality criteria, B= data that should be used with reservation and which only partly fulfils quality criteria, and C= unusable data. Only data that showed no major disturbance within the temperature/depth profile (class A or B) were used in this study. All the temperature/depth data was corrected to the true vertical depth. The initial undisturbed average temperature of Olkiluoto bedrock at the deposition depth of 412 m and the temperature gradient, according to the geophysical measurements, PFL measurements (without pumping), TERO measurements and Antares measurements were found to be 10.93 ± 0.09°C and 1.47°C/100m, 10.85 ± 0.02°C and 1.43°C/100m, 10.60 ± 0.08°C and 1.65°C/100m, and 10.75°C and 1.39°C/100m, respectively. The 3D layer models presented in this study were generated by using Leapfrog Geo software. From the model a 10.5 – 12°C temperature range was obtained for the deposition depth of 412 – 432 m. The models indicated clear temperature anomalies in the volume of the repository. These anomalies showed relationship between the location of the major brittle fault zones (BFZ) of Olkiluoto island. Not all observed anomalies could be explained by a possible cause. Uncertainties within the modelling phase should be taken into consideration in further interpretations. By combining an up-to-date geological model and hydraulic model of the area to the temperature models presented here, a better understanding of the temperature anomalies and a clearer over all understanding of the thermal conditions of the planned disposal location will be achieved. Based on this study a uniform classification improves the usability of data and leads into a better understanding of the possibilities and weaknesses within it. The initial bedrock temperature and the temperature gradient in Olkiluoto present thermally a relatively uniform formation. The estimates of the initial bedrock temperatures and the temperature gradient presented in this study, endorse previous estimates. Presenting the classified temperature data in 3D format generated good results in the light of thermal dimensioning of Olkiluoto by showing distinct relationships between previously created brittle fault zone (fracture zone) models. The views and opinions presented here are those of the author, and do not necessarily reflect the views of Posiva.
  • Aalto, Aino (2023)
    The ongoing environmental change will cause changes in arctic-alpine environment affecting both abiotic and biotic processes and the distribution of arctic-alpine vegetation that has adapted to the cold environment. Former studies on the distribution of arctic-alpine vegetation have been conducted more from a macroclimatic point of view neglecting the microclimate perspective. Microclimate refers to radiation, temperature, humidity, and wind conditions near the Earth’s surface. These conditions vary notably in the topographically heterogenous mountain tundra. The effect of the microclimatic factors is particularly important when investigating low-growing arctic-alpine vegetation as the microclimatic variables can be expected to describe the climatic conditions of the biotically active layer better than the macroclimatic variables. The purpose of this thesis is to study how the microclimatic conditions vary across different biotopes within mountain tundra and to examine which microclimatic variables best explain the local distribution of the arctic-alpine vegetation. The microclimatic variation in the different biotopes of the mountain tundra was studied by examining the statistical key figures of air and soil temperature and soil moisture measurements. Species distributions modelling was used to examine the distribution of arctic-alpine vascular plants and species correspondence to the microclimate variables as well as the importance of those variables on the species distributions. The research material consists of the microclimate and species data collected on the field as well as data based on topography and remote sensing. The data for the study were collected around Rastigaisa mountain in northern Norway. The explanatory variables used in the species distribution modelling included freezing degree day (FDD), growing degree day, radiation, soil moisture, topographic position index and information on the snow cover persistence. Species distribution modelling was performed using generalized boosted regression. From the modelling results the relative importance of the predictor variables as well as the predicted distributions of the species were interpreted. Microclimate factors varied between biotopes. The biggest variation in air temperature was observed at mountain tundra heath. Soil moisture had a levelling effect on the minimum temperatures and the FDD’s. The species distribution modelling results show that snow and moisture variable have a significant impact on the distribution of the arctic-alpine vegetation. Snow controls both temperature and moisture conditions and hence affects the stress that vegetation undergoes as well as the supply of nutrients.
  • Kouki, Kerttu (2017)
    Tutkimukseni tavoitteena oli selvittää, miten kasviperäisten hiukkasten määrä muuttuu Amazonilla ilmaston lämmetessä ja miten se vaikuttaa Amazonin ilmastoon. Hallitustenvälisen ilmastonmuutospaneelin (IPCC) mukaan merkittävimmät epävarmuudet ilmastonmuutoksessa liittyvät aerosoleihin, ja luonnolliset aerosolit aiheuttavat suuremman epävarmuuden ilmastoon kuin antropogeeniset aerosolit. Amazonin sademetsä on erityisen sopiva kasviperäisten hiukkasten tutkimiseen ja tutkimuskysymykseni kannalta kiinnostava, sillä etenkin sadekaudella valtaosa aerosoleista on kasviperäisiä. Tutkimusaineistona käytettiin satelliittien keräämiä havaintoja, joiden avulla määritettiin lämpötila (LST, engl. land surface temperature), aerosolien määrä ilmakehässä (AOD, engl. aerosol optical depth) sekä eri pienhiukkaslähteitä. Samat lähteet, jotka tuottavat pienhiukkasia ilmakehään, päästävät sinne myös hivenkaasuja. Erilaiset lähteet tuottavat erilaisia pienhiukkasia ja kaasuja, joten yhdistämällä havaintoja pienhiukkasista ja hivenkaasuista voidaan niiden lähteet selvittää luotettavammin. LST ja AOD määritettiin AATSR:n (Advanced Along-Track Scanning Radiometer) havaintojen avulla. Pienhiukkaslähteiden tunnistamiseen käytettiin OMI:n (Ozone Monitoring Instrument) keräämiä havaintoja typpidioksidista (NO2) ja formaldehydistä (HCHO) sekä AIRS:n (Atmospheric Infrared Sounder) havaintoja hiilimonoksidista (CO). Tulosteni mukaan pienhiukkasten määrä vaihtelee Amazonilla vuoden aikana varsin paljon: sadekaudella hiukkasten määrä on hyvin vähäinen, kun taas kuivalla kaudella määrä kasvaa moninkertaiseksi laajojen metsäpalojen seurauksena. Voisi olettaa, että lämpimämpinä aikoina myös metsäpalot lisääntyisivät, mutta tulosten mukaan palokaudella pienhiukkasten määrä pienenee lämpötilan noustessa. Suuri osa paloista on kuitenkin ihmisen sytyttämiä, joten myös ihmistoiminnalla on merkittävä vaikutus palokauden hiukkasiin. Hiilimonoksidia ja formaldehydiä muodostuu sadekaudella pääosin kasviperäisistä lähteistä, ja erityisesti hiilimonoksidin määrän havaittiin korreloivan positiivisesti lämpötilan kanssa, mikä viittaa kasviperäisten hiukkasten määrän kasvuun lämpötilan noustessa. Sadekaudella suurin osa hiukkasista on kasviperäisiä ja silloin AOD:n lämpötilariippuvuus on 0,008 ± 0,015 K-1, joten kasviperäisten hiukkasten suora säteilyvaikutus on siten –0,22 ± 0,40 Wm-2K-1 pilvettömälle taivaalla ja –0,08 ± 0,16 Wm-2K-1, kun pilvien osuus on 60 % koko taivaasta. Lämpötilan noustessa kasviperäiset hiukkaset siis todennäköisesti aiheuttavat negatiivisen säteilypakotteen ja siten hillitsevät ilmaston lämpenemistä. Toisaalta tulokseni kuitenkin osoittavat, että metsäpalot ovat hiukkasten merkittävin lähde Amazonilla, sillä metsäpalojen yhteydessä esiintyy merkittävästi luonnollista tasoa enemmän hiukkasia. Metsäpaloista syntyneet hiukkaset todennäköisesti määrittelevätkin AOD:n muutokset myös tulevaisuudessa.
  • Äijälä, Cecilia (2019)
    Itämeren ja sen tilan tutkimus on perustunut rannikon läheisyydessä oleviin mittausasemiin sekä seurantamatkoihin, joita esim. Pohjanlahdella tehdään noin 4 kertaa vuodessa. Viimeisen parinkymmenen vuoden aikana Itämerellä ollaan kuitenkin alettu käyttämään kauppalaivoihin asennettuja läpivirtauslaitteistoja eli niin sanottuja FerryBoxeja, eli niin sanottuja SOOP:eja (ship of opportunity). Automaattiset mittausmenetelmät ovat lisääntyneet viime vuosina ja FerryBox on yksi niistä. Tässä tutkielmassa keskitytään Pohjanlahdella kulkevan M/V Transpaper -aluksen FerryBoxin suolaisuus- ja lämpötilamittauksiin. Keskeisiä kysymyksiä ovat: onko data luotettavaa, mitä data kertoo suolaisuuden ja lämpötilan alueellisista ja ajallisista muutoksista, sekä miten sitä voi hyödyntää Itämeren tilan seurannassa. Tässä työssä käytetty data on haettu CMEMS -palvelusta. Data sisälsi jonkin verran epäluotettavia havaintoja, joten sille tehtiin ylimääräinen laadunvarmennus. Laatutarkastettu data vastasi hyvin lähettyvillä tehtyjä CTD -mittauksia sekä reitin varrella olevia pysyviä mittausasemia. CTD- ja FerryBox -mittausten välillä on vahva korrelaatio. Data sopii hyvin suolaisuuden ja lämpötilan tutkimiseen Itämerellä, kunhan datan laatu on varmistettu. Suolaisuusdatasta nähdään hyvin vuosikierto, pintaveden ollen kesällä vähäsuolaisempaa kuin talvella. Pintasuolaisuus vaihtelee eniten rannikon lähellä Perämerellä ja Merenkurkun eteläosassa, jossa keskihajonta on jopa 0,7 ja vähiten Perämeren keskiosissa ja Selkämeren keski- ja eteläosissa, jossa se on alle 0,2. Vaikka vuosikierto on selvästi nähtävissä, nähdään myös selviä eroja vuosien välissä. Mittausajanjaksosta 2009--2017 vuodet 2016 ja 2017 olivat keskimääräistä vähäsuolaisempia ja 2011--2012 tavanomaista suolaisempaa. Myös lämpötilassa näkyy selvä vuosikierto, sekä vuosien välistä vaihtelua. Ajanjakson lämpimin vuosi oli 2014 ja kylmin 2017. Lämpötilan kuukausikeskiarvoista näkee, että ne ovat selvästi lämpimämmät kuin aiemmin kirjallisuudessa esitetyt lämpötilanarvot. Pintaveden lämpötila oli varsinkin pohjoisessa syksyllä kirjallisuudessa olevia arvoja lämpimpää. Varsinkin Perämerellä lokakuussa keskiarvolämpötila oli 6,7⁰C--10⁰C, joka on ylärajaltaan 4⁰C korkeampi kuin kirjallisuuden 4--6⁰C. Tämä oli oletettua, koska kirjallisuudessa käytetyt arvot ovat 70-luvun alussa julkaistuja ja muutkin tutkimukset ovat todenneet pintavesien lämpenemisen.
  • Taurinen, Janina (2021)
    Maapallon keskilämpötila on ollut selkeässä nousussa jo noin sadan vuoden ajan ja nousun odotetaan jatkuvan tulevaisuudessakin. Suurimman osan eri kuukausien keskilämpötiloista on ennustettu nousevan ilmastollisiin vertailuarvoihin suhteutettuna normaalia korkeammiksi. Lämpeneminen vaikuttaa etenkin korkeiden leveysasteiden talviin. Muutos Suomen lämpötiloissa sekä pohjois- ja eteläosien välisessä lämpötilaerossa on huomattavasti suurempi talvisin kuin kesäisin. Talvi 2019-2020 oli Suomessa ennätyksellisen lämmin. Tässä tutkimuksessa pyrin kartoittamaan kuinka poikkeava talvi 2019-2020 oli lämpötilojen suhteen edellisten 30 talven muodostamaan vertailukauteen verrattuna. Tutkimuksessa tarkastellaan kuutta kuukautta, loka-maaliskuu, ja vertailukauden on valittu olevan tammikuusta 1989 – maaliskuuhun 2019. Lisäksi käsitellään korkeiden lämpötilojen todennäköisimpiä aiheuttajia tarkastelemalla valittuja perusmuuttujia; paine, geopotentiaalikorkeus, ominaiskosteus, ilmapilarin kokonaiskosteus ja yläilmakehän tuulen nopeus ja suunta. Lämpimimmät poikkeamat havaittiin joulu-helmikuussa, kun lounaasta puhaltava suihkuvirtaus toi mukanaan lämpimiä, kosteita ilmamassoja sekä voimakkaita matalapaineita. Tammikuu 2020 rikkoi monilla asemilla lämpöennätyksiä ja Etelä-Keski-Suomessa vertailukauden keskiarvot ylittyivät jopa 7-8 asteella. Helmikuu oli mittaushistorian toiseksi lämpimin. Loka-marraskuu sitä vastoin olivat vertailukautta noin asteen viileämpiä ja maaliskuun puolella poikkeuksellinen lämpimyys tasoittui lähelle vertailukautta. Runsaan matalapainetoiminnan sekä ilman korkean kosteussisällön vuoksi sadetta tuli läpi talven paikoin jopa kaksi-kolminkertaisesti verrattuna keskiarvoihin.