Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by master's degree program "Master's Programme in Genetics and Molecular Biosciences"

Sort by: Order: Results:

  • Müller, Linda Helena (2022)
    Puberty initiation is a crucial physiological process in human development. A group of hypothalamic neurons secreting the gonadotropin-releasing hormone (GnRH) and expressing the kisspeptin receptor (KISS1R) plays a key role in launching puberty. Furthermore, cellular KISS1R signaling has been shown to regulate GnRH expression and secretion. Although the in vitro differentiation of human pluripotent stem cells into GnRH-secreting neurons has been successful, it is of high interest to generate KISS1R expressing GnRH neurons. By utilizing the CRISPR activation technology, this study aimed to establish a conditional KISS1R-activation cell line using H9 human embryonic stem cells. Through controlling dCas9VP192 abundance using the Tet-On system combined with the dihydrofolate reductase destabilizing domain, the transcriptional activation of KISS1R was temporally regulated by the addition of two antibiotic drugs - doxycycline and trimethoprim. KISS1R expression was primarily assessed by qPCR and verified by immunocytochemistry and the use of a KISS1R-GFP reporter cell line. The main finding of this study is the achievement of a 6217 ± 2286 fold change in KISS1R transcription by introducing two guide RNAs (N = 3). Nevertheless, leaky gene activation was observed without drug treatment (fold change of 63 ± 51). Concludingly, this study successfully led to the generation of a KISS1R-activation cell line. After further characterization and refinement of the activation protocol, the established cell line will enable to investigate whether KISS1R upregulation modulates in vitro GnRH neuron differentiation, electrophysiology, hormone expression, and secretion in the future. Respective outcomes may lead to advances in understanding and treating pubertal disorders.
  • Wei, Xiaodong (2022)
    The composition and dynamics of the early life gut microbiota plays a major role in establishing neonatal immunity and is suggested to have multiple impacts on the child’s long-term health. Meanwhile, the composition of the infant gut microbiome has been shown to be affected by the birth mode, infant health and diet. However, the characterization of the infant gut microbiome and its impact on the host’s health is still challenging as the contribution and importance of multiple co-factors on the early microbiome during infant growth is still poorly understood and characterized. The Health and Early-life microbiota (HELMi) is a cohort of more than 1000 healthy Finnish infants currently followed from birth to 4-5 years old. By now, the HELMi dataset comprises more than 400 whole genome shotgun metagenomes obtained from stool samples from 80 infants and parents, but also an in-depth characterization of the families’ lifestyle, environment, health and nutrition, allowing for a precise and cutting-edge characterization of the early gut microbiota. Based on the datasets from the HELMi, this project used Metaphlan3, Kraken and Braken to determine the best computational approach for the taxonomic profiling of the metagenomic reads. Then a PERMANOVA test was performed to evaluate and determine the factors significantly associated with the compositional microbiota variation within the infant gut metagenomes. This study first identified technical factors introducing bias in taxonomic profiling (e.g., DNA extraction batch), which served as confounders in the analysis of environmental and host variables. The investigation of these biological factors indicates that pre-natal and peri-natal variables such as the mode of delivery significantly impact the infant gut microbiota, while we did not identify any significant impact of breastfeeding habits and medication exposures in this study.
  • Abbas, Salma Magdy Hussein Jr (2024)
    Elevated low-density lipoprotein cholesterol (LDL-C), hypercholesterolemia, is characterized by complex and poorly understood genetic contributions. Cellular LDL uptake mediated by the LDL receptor is pivotal to disease progression. After LDL internalization LDLR is recycled to the plasma membrane. Genetic mutations are known to exist in factors driving LDLR recycling but their contribution to hypercholesterolemia is not known. SNX17 has been postulated to be important for LDLR recycling. The goal of this study was to investigate the effect of SNX17 on cellular LDL uptake and to evaluate whether functional characterization of SNX17 gene variants can be performed. At the same time, adjusting an existing semi-automated analysis pipeline to generate expression constructs for SNX17 genetic variants. In this study, using an SNX17 knock-out cell line and an SNX17 rescue cell line (SNX17 knock-out cells transfected with GFP-SNX17 construct), it was shown that SNX17 might have a role in LDL uptake. The semi-automated workflow for generating genetic variants was successfully adopted to SNX17, warranting further experiments to define the optimal conditions for the functional characterization of SNX17 gene variants. This thesis sets the foundation for a deeper understanding of SNX17 in LDLR recycling and provides first insights into the potential regulation of this pathway, while also initiating the way for the later characterization of SNX17 variants. Hence, functional genomic studies together with the functional characterization of genetic variants in LDLR recycling factors can improve our understanding of how genetic variation contributes to disease progression and develop better risk assessment tools.
  • Salciute, Martyna (2024)
    Lynch syndrome is the most common hereditary colorectal cancer (CRC) syndrome caused by inherited mutations in DNA mismatch repair genes. Of those, MLH1 is the most mutated predisposition gene and is best known for its involvement in the DNA mismatch repair (MMR) pathway. In addition to the MMR, MLH1 has proved to have a multifunctional role in assisting in the maintenance of genomic stability. Emerging evidence suggests, that reduced levels of MLH1 directly contribute to an increased number of DNA double-strand breaks (DSBs), leading to chromosomal instability (CIN) through impaired mitochondrial function and homologous recombination directed DSB repair. This study aimed to test this hypothesis by evaluating the DNA damage status and mitochondrial functionality in MLH1 knock-down (KD) fibroblast cell lines with varying expression levels of MLH1. DNA damage levels and repair kinetics were inspected by implementing the Comet assay. Moreover, mitochondrial homeostasis examination was done by utilizing functional mitochondrial staining and analysing mitochondrial DNA copy number. Although there was variability in the results, two KD cell lines exhibiting 30% (line 3A3) and 40% (line 2B7) MLH1 expression levels showed similar outcomes: decreased mitochondrial membrane potential, increased cellular reactive oxygen species (ROS) and stalled DNA damage repair as compared to control cell lines, suggesting the involvement of MLH1 deficiency. It is known, that MLH1 depletion predisposes to DNA damage due to impaired MMR. The findings of this thesis contribute to the growing body of evidence, suggesting that MLH1 deficiency may increase the propensity for DNA DSBs, possibly due to impaired mitochondrial function and subsequent elevation in cellular ROS. Furthermore, this increase in DNA breaks may result in CIN. However, given the limited sample size, the results warrant future studies with larger datasets.
  • Uriona Egia, Garazi (2023)
    The ends of eukaryotic chromosomes are formed by a special heterochromatic structure, the telomere, which is essential to guarantee chromosome stability. Telomeres protect chromosomic ends from DNA degradation, repair, and recombination events. However, they are difficult to replicate due to their repetitive and heterochromatic nature, which hinder DNA replication fork progression. In yeast, Mph1 helicase promotes replication fork regression, cross-over suppression during homologous recombination (HR), and telomere maintenance. Moreover, Mte1 is a D-loop binding protein involved in response to DNA damage and maintenance of telomere length, which interacts with Mph1, thereby stimulating its regression capacity as a helicase and fork. Thus, the Mte1-Mph1 complex is recruited to stressed telomeres. Mte1 also shares a domain of unknown function, DUF2439, with Rad51 and Rdh54. Additionally, Esc2 protein is involved in the regulation of DNA damage through template switch (TS) recombination, preventing HR events caused by Mph1. This thesis aimed to uncover the potential roles and interactions of proteins involved in telomere maintenance, such as Mph1, Mte1, Esc2 and Rdh54, for which two main assays were conducted: (1) Telomere Stability assay, consisting of Tus/Ter barrier based on the high-affinity binding of the E. coli protein, Tus, to specific DNA sequence called Ter; (2) Template Switching assay, focused on the capability of the proteins in reconstructing a functional LYS2 gene by TS. The obtained results demonstrated that (1) the absence of Rdh54 enhances replication fork regression, (2) Mte1 and Esc2 show opposite roles in telomere maintenance, (3) the interaction between Mte1 and Rad51 plays a crucial role in ensuring telomere stability and nuclear foci formation, (4) Mph1 and Mte1 promote cell survival through the break-induced replication (BIR) pathway. Further studies should assess the plausible interaction between Mph1 and Rdh54 proteins and characterize the function and interplay of the proteins involved in TS.
  • Fischbach, Lea (2022)
    Establishing and maintaining cell polarity is critical to all multicellular organisms. Apicobasal polarity is a type of cell polarity specific to epithelial cells, which is established and maintained by three distinct protein complexes. Among them, the Scribble (Scrib) complex plays a role as a basolateral determinant. Scrib is a scaffold protein with multiple functions, including maintenance of the basolateral polarity of epithelial cells and a tumor suppressor, acting as a regulator of the Hippo signalling, an evolutionarily conserved pathway which controls organ size through regulation of cell proliferation and apoptosis by inhibiting the transcriptional co-activator protein Yorkie (Yki). A recent experiment proposed that Scrib is involved in maintaining tissue homeostasis through relaying apicobasal polarity regulation across the tissue. This mechanism can be used both by normal cells to rescue hypomorphic scrib cells and by loss of scrib cells to spread loss of polarity. The signal is likely related by cell-cell contact and the junctions present in epithelial cells may be involved in this communication. This project aims to identify the genes involved in tissue homeostasis through intercellular alignment of apicobasal polarity together with Scrib. First, a screening protocol was established by studying genetic interactions and tissue structure. Second, a systematic screening was carried out by using deficiency lines of left arm of the third chromosome in Drosophila. Fly stock expressing spatially and temporally controlled scrib RNAi was established and crossed with deficiency lines to identify genes that have synergy with Scrib. The wing discs of the offspring were dissected, imaged, and the phenotypes were sorted into categories according to the degree of overgrowth. Five strong candidates and four candidates with milder phenotype were identified. The results show the screening method is robust and suitable to carry out a finer, single gene level screen of the candidates, as well as screening for additional candidates in the rest of the Drosophila genome. The identified candidates provide new leads to develop the theorical model of intercellular alignment of apicobasal polarity. Understanding how apicobasal polarity is maintained in the dynamic environment of a living organism is important for physiological and pathological conditions. This study provides an important insight into further understanding tissue development and homeostasis.
  • Erten, Nehir Birke (2024)
    Hypercholesterolemia is characterized by elevated levels of low-density lipoprotein (LDL) cholesterol in the bloodstream and contributes substantially to the global burden of atherosclerotic cardiovascular disease (ASCVD). Low-density lipoprotein receptor adaptor protein 1 (LDLRAP1) is an endocytic adaptor protein which assists LDL internalization by promoting LDLR localization in clathrin-coated pits and mutations in LDLRAP1 are associated with autosomal recessive hypercholesterolemia. However, the clinical relevance of many LDLRAP1 variants is yet to be fully determined. The aim of this master’s thesis is to adopt an analysis pipeline for bulk generation and functional characterization of such LDLRAP1 variants. To accomplish this goal, a cell model with impaired LDLR internalization is validated and the activity of LDLRAP1 and LDLRAP1 variants are evaluated within this system. This involves implementing a semi-automated variant generation pipeline to produce LDLRAP1 variants in large-scale, and LDLRAP1 variants are introduced into this cell system. The main finding of this thesis is that impaired LDLRAP1 function results in LDL-LDLR complexes to be retained on plasma membrane. The expression of LDLRAP1-GFP in internalization deficient cells reduced LDL and LDLR accumulation on plasma membrane. These features were evaluated for variant characterization, revealing three variants that may have impaired LDLRAP1 functionality. In conclusion, the findings of this thesis underscore the imperative for large-scale variant generation efforts and highlight the pivotal role of LDLRAP1 functionality in LDL internalization.
  • Sinha, Snehadri (2018)
    Atherosclerosis is a cardiovascular disease characterized by the formation and growth of plaque within the arteries. Lipoproteins, especially LDL, initiate atherosclerosis by accumulating in the intima of arteries and becoming modified, e.g. oxidised. Oxidised LDL (OxLDL) is highly pro-atherogenic and promotes atherosclerosis in multiple ways. The role of platelets in the later stages of atherosclerosis is well-documented, but platelets may also be involved in earlier stages of atherosclerosis. Platelets release extracellular vesicles (PEVs) in the form of microvesicles (microparticles) and exosomes that participate in intercellular signalling and in similar pathophysiological processes as platelets. Lipoproteins are known to activate platelets but their effects on PEV formation have not yet been studied. The aim of this thesis was to investigate the effect of OxLDL on PEV formation and compare it to other potential agonists such as LDL, HDL, ATP, thrombin and collagen. Platelets were activated with these agonists separately or in combination with OxLDL. PEVs were studied from the platelet-depleted supernatant and the isolate, which was obtained by differential centrifugation. PEVs were quantified in terms of CD61+ PEVs and particle count by flow cytometry and nanoparticle tracking analysis, respectively. PEVs were characterized by the relative amounts of CD41 (platelet and PEV marker) and Hsp70 (general EV marker) detected by Western blotting. Lastly, the uptake of the differently induced PEVs by HepG2 hepatoma cells was compared by fluorescence microscopy as a characterization of the PEVs’ functionality. Among the lipoproteins, OxLDL was indicated to be a much more potent inducer of PEVs than LDL or HDL, as shown by flow cytometry of CD61+ PEVs, nanoparticle tracking analysis and CD41 and Hsp70 levels in the isolates. However, OxLDL was not as strong a PEV inducer as the co-stimulation with thrombin and collagen (T&C), which induced the highest PEV formation. Size distribution analysis showed that PEVs smaller than 100 nm in size comprised a larger proportion of the total PEVs in OxLDL-induced PEVs compared to LDL- and T&C-induced PEVs. OxLDL combined with weak PEV inducers such as HDL and ATP had an amplifying effect on the generation of CD61+ PEVs, while the highest PEV formation was observed when OxLDL was combined with thrombin and collagen. When OxLDL-induced PEV formation was tested against a range of HDL concentrations, the extent of PEV formation and relative Hsp70 levels both decreased in a HDL concentration-dependent manner up to 50 µg/mL HDL. Both LDL- and OxLDL-induced PEVs were taken up by HepG2 cells, but there was no statistically significant difference between the two. The results indicated the potency of OxLDL in inducing PEV formation, thereby suggesting a novel mechanism by which OxLDL could contribute to the progression of atherosclerosis. Further studies on OxLDL-induced PEVs are needed, but if significant lipoprotein-specific changes in PEV numbers and properties could be observed, PEVs could then be used as a biomarker to diagnose atherosclerosis already at the early stages.
  • Perkiö, Anna (2021)
    Long interspersed nuclear element 1 (LINE-1 or L1) belongs to a class of retrotransposons. In other words, it is a DNA element that can copy and paste itself around the genome. There are approximately 500,000 copies present in humans, but only around 5,000 are expected to remain transcriptionally competent. The activity of L1s is generally strongly repressed in normal human tissues, but in many cancers, these elements are reactivated. Both L1 transposition and transcription can have significant effects on cellular function, making it an interesting topic of research from a pathological point-of-view. By studying and understanding more about this transposon, it could be possible to find novel screening methods or even therapeutics for different cancers. One of these cancer types is high-grade serous ovarian carcinoma (HGSOG), which is known for exhibiting L1 upregulation. However, the quantification of L1 transcription has been proven to be very challenging, mostly due to alignment issues caused by the repetitive nature of the element. In addition, a large proportion of L1s reside within genes, meaning that L1 sequence -containing transcripts frequently do not originate from the L1’s own promoter. This thesis aimed to tackle these challenges; I quantified L1 expression at the single-locus level in 11 pre- and post-chemo HGSOC sample pairs, as well as in 5 samples from healthy women, based on single-cell RNA-sequencing. In addition to comparing L1 activity in different sample and cell types, I researched whether L1 activity was associated with any changes in gene expression. The poly(A) site of an L1 is relatively weak, meaning that L1 transcription frequently extends over it. Based on this fact, the utilized approach was to quantify L1 expression based on reads mapping to the 1 kilobase downstream window of each L1 locus, thus minimizing the alignment issues of repetitive elements. Thereafter, the features of the detected loci were carefully assessed to separate false-positive L1s from those with evidence supporting genuine activity, such as tumor sample enriched expression, lack of correlation to host gene, and detection with bulk RNA-sequencing. The activity of the latter loci was then further analyzed to search for differences in L1 expression between pre- and post-chemo samples. In addition, the association between L1-activity and gene expression was examined based on regression models both at the individual gene and molecular signature gene set-level. It was found that L1 expression data is filled with factitiously active loci, highlighting the importance of careful analysis and wet lab validations when studying transposon activity. However, regardless of the issues arising from a sparse and unreliable dataset, I showed that L1 activity was negatively associated with the expression of MYC target genes. MYC has been previously shown to be a transcriptional repressor of the L1, indicating that the obtained results are legitimate. Even though the results obtained from this study appear to be biologically justifiable, they would require further validation to ensure their authenticity. In addition, for the future it would be essential to enhance the sensitivity of the utilized workflow to minimize the sparsity of the data, so that statistical analyses performed would become more reliable. Nevertheless, it was shown that assessing L1 expression at the single-cell level using RNA-sequencing is executable.
  • Tiilikainen, Emmi (2023)
    Lymphatic vascular system consists of lymphatic capillaries and collectors existing alongside a circulatory system of blood vessels. The lymphatic system is responsible of draining tissue fluids, trafficking of immune cells and intestinal absorption of dietary lipids. Most of the lymphatic networks develop during embryogenesis, but lymphangiogenesis (the growth of new lymphatic vessel, LV) occurs also in adult tissues, for example, during inflammation. Exposure to vascular endothelial growth factor C (VEGF-C) initiates lymphatic endothelial cell (LEC) proliferation and sprouting of LVs. In lymphangiogenesis, leading tip cell migrates and samples the surrounding environment while stalk cells proliferate and are responsible of LV elongation and extension. Since polarity of dividing cells and subsequent daughter cell positioning possess a key role in morphogenesis of tubular organs, such as lungs, kidney or blood vessels, a regulation of daughter LEC positioning after cell division might determine how LVs elongate and widen. The aim of this study was to investigate the LV network enlargement and daughter LEC positioning during growth of LVs and to reveal potential contributing factors guiding the cell positioning (such as cell polarity). In this study, the LV network of mouse ear pinna was used as a model tissue to investigate LV network enlargement, daughter LEC positioning and LEC polarity in growing LVs. Characterization of mitotic cells in developing LV network revealed that LEC proliferation occurs throughout the entire length of LVs in the network. To investigate LEC polarity in developing and mature LVs, I analysed Golgi and nuclear polarity of tip and stalk LECs. I found that whereas LECs during development are polarized and oriented along the long axis of LV, there is more variation in the direction of LEC polarity in relation to LV long axis in mature LV. This observation raised a question whether changes in the cell polarity were reflected to cell positioning, hence I analysed the positioning of daughter LECs by forcing LECs to the cell cycle with VEGF-C. These results indicated cell-level mechanisms that may contribute to LEC positioning in lymphangiogenesis. My finding provides an efficient tool for further research due to its suitability for monitoring proliferating LECs and studying causative factors affecting LEC proliferation and positioning. Future experiments with real-time imaging will reveal more about lymphangiogenesis process and provide insights into the role of lymphatic vasculature in conditions such as inflammation-related lymphedema or anti-tumor immunity in cancer.
  • Stendahl, Annie (2022)
    Abstract Faculty: Faculty of Biological and Environmental Sciences Degree programme: Genetics and Molecular Biosciences Study track: Molecular and Analytical Health Biosciences Author: Annie Stendahl Title: Measurement repeatability of flow cytometry and nanoparticle tracking analysis for optimization of extracellular vesicle measurements Level: Master’s thesis Month and year: 11/2022 Number of pages: 92 Keywords: extracellular vesicles, repeatability measurements, metrology, traceability, flow cytometry, nanoparticle tracking analysis, reference material, METVES Supervisor or supervisors: Virpi Korpelainen, Katariina Maaninka and Pia Siljander Collaborative partner: VTT Technical Research Centre of Finland Ltd. Where deposited: E-thesis Extracellular vesicles (EVs) are lipid bilayer-enclosed vesicles secreted by all cells, containing variable cargo from nucleic acids and proteins to carbohydrates, metabolites, and lipids. EVs are considered to be involved in many physiological and pathological cell functions. Due to their presence in biofluids hence enabling semi-invasive liquid biopsies, EVs have indicated great promise for utilization as biomarkers in clinical settings. The innate properties of EVs and their cargo could also be harnessed into therapeutic use. However, the current methods and reference materials for determining EV concentration and size have not yet achieved the metrological level of repeatability and traceability, which is needed for EV measurements to be utilized in clinical settings. The aim of this thesis project was to evaluate repeatability of the methods typically used for EV quantification and size determination, flow cytometry (FCM) and nanoparticle tracking analysis (NTA). The repeatability was analyzed with reference material made of hollow organosilica beads and biological EV test samples, both developed in an ongoing EU metrology-project METVES II for EVs. A similar biological EV test sample was also prepared as part of the thesis project. Finally, the repeatability measurements were conducted with calibration beads recommended by the instrument manufacturers. The calibration beads gave repeatable results with FCM and one of the two NTA instruments tested, but neither the reference beads nor the biological EV test samples produced repeatable results to enable determination of repeatability. However, valuable understanding was gained on what can be optimized during the measurements and operation of the instruments to generate more repeatable results with FCM and NTA in EV analysis. Prior knowledge of both the sample type and method used for measuring would enable optimization of the measurement and instrument operation. Whether the aim is EV quantification or size determination, instrument errors and bias could then be minimized by adjusting the settings according to sample type. Furthermore, EV quantification and size determination would benefit from combining different methods to ensure more reliable and repeatable results. It is clear that more research needs to be done, for i.e., the tested reference beads need to be further developed to be established as EV reference material and enabling standardization of EV measurements. Standardizing EV quantification and size determination is required to achieve metrological repeatability and ultimately, traceability, and thus for EVs to be utilized in clinical settings as biomarkers or therapeutic use.
  • Savelius, Mariel (2020)
    Breast cancer remains as the leading cause of cancer deaths among women. Triple-negative breast cancer (TNBC) is one of the most aggressive breast cancer subtypes and lacks targetable receptors, consequently, cannot be treated with current hormone of anti-HER2 targeting therapies. Thus, there is a need for discovering novel and well-tolerated therapies. MYC is a proto-oncogene and a transcription factor, that is frequently amplified and overexpressed in breast cancers. MYC is involved in many cellular processes promoting cell proliferation, however, overexpression of MYC can also sensitize cells to replicative stress and apoptotic cell death. In our previous studies we have shown that pharmacological activation of AMPK, a cellular energy sensor, synergises with Bcl-2 family inhibitors, such as navitoclax and venetoclax, and activates MYC-dependent apoptosis in breast cancer cell lines, transgenic mouse models of MYC-dependent mammary tumorigenesis and in MYC-high patient-derived explant cultures (PDECs). In subsequent study we observed, that indirect AMPK activator metformin alone inhibited tumor growth in vivo, but did not induce apoptosis in mouse tumors or in PDECs. Metformin, a type II diabetes mellitus drug, has shown anti-cancer effects in some population studies and is under investigation for a cancer therapies, however the whole mechanism of action in cancer is still not well-known. To elucidate metformin’s effects on MYC overexpressing triple-negative breast cancer cells, I will present, that metformin has anti-proliferative effects and show that long term metformin treatment induces senescence biomarkers in MYC-high TNBC breast cancer cell lines. To study metformin's short and long-term anti-proliferative activity, cell proliferation during and after drug treatment was investigated, which showed, that metformin’s effects do not seem to persist long after drug withdrawal. In conclusion, the key observation of this thesis was, that metformin does inhibit the proliferation of MYC overexpressing cancer cells and presents a senescence phenotype that possibly can be exploited to find new targeted therapies for triple-negative breast cancer patients.
  • Dreilinger, Olivia (2023)
    Animal coloration is as striking as it is diverse; however, the transcriptional basis of coloration is not deeply understood. Cichlid fishes are a tractable system for studying coloration as they exhibit a wide range of phenotypic diversity while remaining genetically similar. This facilitates the study of genotype-phenotype correlations and the identification of causative genes. RNA sequencing is a powerful approach to investigate the genes which characterize chromatophores. However, RNA-seq results can be plagued by the high abundance of rRNA in cells. This thesis aims to investigate differential gene expression between differently pigmented regions as well as explore the effects of tissue treatments and rRNA depletion on gene expression. Gene sets acquired with polyA selection, riboPOOL probes optimized for zebrafish, and zebrafish probes complemented with newly designed riboPOOL cichlid probes were compared to assess the functionality of these different rRNA depletion strategies. The use of zebrafish probes complemented with newly designed cichlid probes captured the greatest diversity of genes, many transcripts of which were missing from the other gene sets. Furthermore, as experiments such as scRNA-seq rely on a dissociation step, the effect of dissociation on gene expression was examined and found to promote the expression of stress response genes. The results of this upstream optimization were applied in the analysis of differential gene expression between the vertical stripes of the cichlid Pseudotropheus demasoni to better understand the molecular basis of vertical striping in fish. The dark stripes exhibited upregulation of melanic marker genes and the light, iridescent stripes showed an increase in iridophore marker gene expression. These findings were corroborated with cell count data from FACS to link transcriptional profiles and cell type quantifications. Overall, the study provides insight into the transcriptional basis of coloration in cichlid fishes and underscores the importance of optimizing methods drawing meaningful conclusions.
  • Carpelan, Mathilda (2022)
    Studerande i början av sina akademiska studier har en varierande nivå av förhandskunskaper och det är väl rapporterat inom pedagogisk forskning att den tidigare kunskapen påverkar studerandens inlärning av olika koncept. Den konstruktivistiska inlärningsteorins grundprincip är att all ny kunskap byggs ovanpå den tidigare kunskapen och därför kan den tidigare kunskapen i stor mån förutspå hur väl inlärningen sker. Teorier kring konceptuell förändring bygger vidare på den konstruktivistiska inlärningsteorin och förklarar konceptuell förändring som den delen av inlärningen där mottagningen av den nya kunskapen leder till en omorganisering av den tidigare erfarna kunskapen, så att den tidigare kunskapen bearbetas och revideras så att den passar in med den nya kunskapen. De olika teorierna kring konceptuell förändring lyfter också fram att den tidigare kunskapen kan stå i strid med den nya kunskapen, och att det i dessa fall kan leda till att inlärningen av den nya kunskapen försvåras. I denna avhandling används begreppet missuppfattningar då man avser förståelse av koncept där tidigare kunskap står i strid med den nya kunskapen. Missuppfattningar kan delas in i faktuella och robusta missuppfattningar baserat på hur grova de är och i fyra olika kategorier enligt deras typ: felaktiga antaganden, bristfälliga mentala modeller, misskategorisering och avsaknad av schema. Denna studie undersökte utvecklingen av studerandes förståelse mellan det första, andra och tredje akademiska studieåret och förekomsten av missuppfattningar under det tredje akademiska studieåret. Studerandena som deltog i studien började studera i kandidatprogrammet i miljövetenskaper år 2019 och har besvarat studien under hösten i tre år i rad: år 2019 (N = 46) , 2020 (N = 37) och 2021 (N = 34). Studerandena besvarade ett frågeformulär med åtta öppna frågor som gällde centrala biologiska koncept: fotosyntesen, cellandningen, växternas roll ur näringskedjans perspektiv, växternas roll ur atmosfärens perspektiv och evolutionen. Svaren analyserades sedan kvantitativt för att undersöka utvecklingen av studerandenas förståelse mellan det första, andra och tredje akademiska studieåret. Dessutom analyserades svaren från det tredje (N = 34) akademiska studieåret kvalitativt för att undersöka vilka (miss)uppfattningar som förekom hos studerandena. Resultaten visar att studerandena klarade sig bättre i de uppgifter som mätte förmågan att ange fakta och sämre i de uppgifter som mätte förmågan att tillämpa kunskap. Det var en större variation mellan studerandenas svar i de faktabaserade uppgifterna, vilket överensstämmer med tidigare studiers resultat. I de tillämpade uppgifterna var studerandenas svar ganska korta och ytliga. Studerandenas prestationer under det tredje året varierade beroende på uppgift, och som förväntat baserat på tidigare studiers resultat hade den största utvecklingen skett i uppgiften som handlade om växternas roll ur näringskedjans perspektiv, medan studerandena i uppgiften om evolutionen presterat sämre under tredje året än under andra året. Evolutionen var också det koncept som hade flest grova missuppfattningar av typen avsaknad av schema, vilket indikerar att det finns en bristfällig förståelse för evolutionen. Då man känner till hur viktig roll den tidigare kunskapen har för inlärningen och hur väl kunskapen i början av de akademiska studierna kan förutspå studerandens inlärningsförmåga och prestationer i fortsatta akademiska studier förstår man hur viktigt det är att förstå sig på konceptuell förändring.
  • Asikainen, Virpi (2022)
    Chemoresistance is a significant contributor to the lethality of high-grade serous ovarian cancer (HGSOC). Treatment response to traditional platinum-based chemotherapy is poor, and the need for improvement is urgent, as more than 50% of the patients pass within 5-years from diagnosis. Mitochondrial metabolism has emerged as a potential target in HGSOC, and enhanced capacity in mitochondrial oxidative phosphorylation (OXPHOS) has been shown to correlate with a better chemoresponse. The vital metabolic cofactor for mitochondrial enzymatic reactions, during e.g. OXPHOS, is nicotinamide adenine dinucleotide (NAD+). It is now well-established that NAD+ precursor supplementation can boost intracellular NAD+ content and, consequently, mitochondrial function. In cancer, NAD+ boosting shows mitochondrial activation mediated anticancer and chemosensitizing effects and presents an intriguing route to modulate cancer metabolism and treatment response. In HGSOC, NAD+ metabolism and its association with tumours’ metabolic profile is poorly understood. Also, the impact of mitochondrial activation on HGSOC chemoresponse remains unexplored. This thesis aimed to evaluate patient-derived HGSOC tumour NAD metabolite content and its association with OXPHOS. Also, the aim was to explore whether in vitro NAD+ boosting promotes mitochondrial function and subsequently enhances chemosensitivity to platinum-based treatment. Thus, I measured the NAD metabolite concentrations in HGSOC tumours and two HGSOC cell lines, OVCAR-5 and COV318. The impact of NAD+ boosting on HGSOC cells OXPHOS and chemoresponse was assessed with respirometry and cell viability assays. I found that the HGSOC tumours presented alterations in NAD metabolite content, with an increase in the reduced forms and a decrease in the metabolite redox ratios. Also, the change in the NAD metabolite seemed to be impacted by the tumours’ anatomical location and OXPHOS capacity. In vitro HGSOC cells differed in their OXPHOS capacity, with the OXPHOS-high cell line exhibiting enhanced sensitivity to chemotherapy. The NAD+ boosting increased intracellular NAD+ content and mitochondrial OXPHOS without impacting the cells’ chemoresponse or growth. In conclusion, the altered NAD+ metabolism in HGSOC tumours presents potential target pathways for the disease with poor treatment response. The NAD+ boosting mediated metabolic modulation increased the OXPHOS capacity independently of the cell lines’ OXPHOS-status. In OXPHOS-low cells’ mitochondrial activation enhanced OXPHOS to the level of chemosensitive OXPHOS-high cells but did not alter the cell lines’ chemoresponse within a short-term treatment period. These observations have increased the understanding of NAD+ metabolism. Also, as a proof-of-principle, NAD+ boosting was presented as a tool for mitochondrial activation and metabolic modulation in HGSOC cells, opening an intriguing approach to explore HGSOC mitochondrial function and chemoresponse.
  • Iacoviello, Francesco (2022)
    Neurodevelopmental disorders (NDDs) are disabilities in which the formation and development of the central nervous system is altered. NDDs severely impact the quality of life of the individuals that are affected by them, however little is known about the causes or the molecular mechanisms that are behind their onset. For this reason, being able to model them is pivotal to our society since, by understanding the mechanisms underlying such disorders, we could develop possible treatments. Previous research has suggested that disturbances in the early neuronal development could be at the basis of NDDs onset. Therefore, in this work, I have modeled neuronal differentiation in Kabuki syndrome (KS), a known NDD, assaying the expression of key early neurodevelopmental markers at four specific timepoints, using induced pluripotent stem cell (iPSC) technology. By concurrently differentiating three KS patient-derived and three control iPSC lines to neural precursor cells (NPCs) and profiling them with immunocytochemistry (ICC) and quantitative real-time PCR (RT-qPCR), I was able to identify differences in the early developmental trajectories of NPCs between the two conditions. The ICC data suggested that differentiating KS cell lines incur in precocious differentiation when compared to control cell lines, suggesting that the disease-causing mutations could lead to accelerated neuronal maturation of early NPCs. However, RT-qPCR analysis of the expression patterns of key neurogenesis markers was unable to statistically confirm the observed trend between the two phenotypes, likely due to limitations in statistical power. Despite this, the expression of four out of seven NPC markers was higher in early KS cells than in control cell lines, supporting the hypothesis of accelerated neuronal maturation. Taken together, this work highlighted some of the challenges related to iPSC-based disease modelling studies, and the need to further confirm the inferred mechanisms of asynchronous neuronal development observed in this work.
  • Metso, Saana (2023)
    Lethal congenital contracture syndrome 1 (LCCS1) is a severe developmental disorder that is part of the Finnish disease heritage. The affected foetuses die in utero and show a lack of motor neurons accompanied by severe atrophy of the ventral spinal cord and muscles and severe contracture of joints, which result in a lack of involuntary movements. Other associated symptoms include hydrops, micrognatia (small jaw), pulmonary hypodysplasia and small size. The syndrome leads to prenatal death before 32nd gestational week, but the cause remains elusive. LCCS1 is caused by a homozygous mutation, FINmajor, in GLE1 RNA export mediator (GLE1) -gene. The mutation is a c.432- 10A > G substitution at the border of intron three and exon four, resulting in a new splice acceptor site 10 nucleotides upstream of the intron-exon junction. This results in aberrant splicing and nine extra nucleotides in the mRNA, corresponding to three extra amino acids in the GLE1 protein of the affected individuals. GLE1 is an important player in RNA biology in cells. In humans it has two isoforms, GLE1A and GLE1B, that have distinct roles. While GLE1A plays a role in cells’ stress response by mediating the formation and disassembly of stress granules in the cytoplasm, GLE1B is found at the nuclear envelope where it mediates mRNA transport from the nucleus to the cytoplasm. Earlier studies using HeLa cells and zebrafish have demonstrated that FINmajor in GLE1 knock-down background disrupts the mRNA export from nucleus to cytoplasm and leads to apoptosis in neural precursors and abnormal arborization of motor neurons, thus mimicking some of the phenotypic features observed in human patients. Kuure group has generated a mouse model with endogenous FINmajor, but it fails to morphologically phenocopy the human disorder (unpublished data). Importantly, human-origin non-cancerous models with endogenous FINmajor mutation have not yet been used in the studies of GLE1 and LCCS1. My aim in the thesis was to create a human embryonic stem (hES) cell line carrying homozygous FINmajor mutation in its genome. A relatively new tool, CRISPR/CAS -system allows for precise genetic engineering in a variety of model organisms. By optimizing the system to efficiently edit the GLE1 gene, I was able to introduce FINmajor mutation in hES cells, creating a new model system to study this disorder. While previous models had relied on temporary silencing of the gene with morpholinos or siRNAs, the hES cell line with GLE1 FINmajor mutation will for the first time give insights on how the mutation affects cellular functions, mRNA biology and cell differentiation in LCCS1. This way the hES cell line I have generated will yield new information on the development, progression and manifestation of the syndrome to better understand its mechanisms.
  • Sundaresh, Adithi (2022)
    Human induced pluripotent stem cells (iPSCs) are an important in vitro model of disease and development. iPSCs can be differentiated in culture into cell types which are difficult to access from patients, such as neurons. Applying iPSC-derived cellular models to disease studies requires a thorough characterization of the derived cell types, as well as assessing reproducibility across cell lines or differentiation batches. With the aim of providing such a comprehensive molecular characterization at an early stage of cortical neuronal differentiation in vitro, six iPSC lines from four donors were differentiated to cortical neural progenitors using a modification of an established protocol (Shi et al., 2012a). The protocol successfully produced neural progenitors, with over 75% of the differentiated cells aligning with a cortical identity, as confirmed via qPCR and immunocytochemistry of established markers such as PAX6, NES and SOX1. To further classify the cell types produced as well as identify potential differences between cell lines, gene expression of the obtained cells was profiled with single cell RNA sequencing of ~22,000 cells, which uncovered the heterogeneity of neural progenitors produced. Further, although two differentiation batches produced similar cell-type compositions on a whole, a fraction of the lines showed inter-individual differences in cell type composition, which correlated with expression variability of known marker genes. Additionally, the cell types produced in vitro were compared to those produced in vivo by mapping our dataset to a reference fetal brain dataset (Polioudakis et al., 2019). It was observed that the in vitro dataset represented a subset of the cell types present at mid-gestation. Overall, the single cell characterization of differentiated cells allowed greater resolution in understanding cell-type heterogeneity of cortical neurogenesis, which is of key relevance for future applications such as disease modeling.
  • Patrikainen, Linda (2023)
    Breast cancer is globally the leading cause of death in women. ER positive, HER2 negative breast cancer is the most common subgroup, covering two thirds of all breast cancer cases. The different isoforms of ERα, ERα66 and ERα36 are responsible of genomic and non-genomic ER signaling respectively. Tamoxifen is one of the most used drugs in ERα+ breast cancer. As a SERM tamoxifen blocks the activity of ERα66, but plays as an agonist for ERα36, which is associated with tamoxifen resistance. Tamoxifen resistance concerns more than 25% patients with ERα+ breast cancer but the molecular mechanisms that lead to development of resistant disease remain uncovered. Thus, the aim of this thesis was to reveal how two different ERα isoforms are used and regulated in tamoxifen resistance in two commonly used ERα+ breast cancer cell lines MCF7 and T47D. We studied the effect of hormones to tamoxifen sensitivity and to utilization of ERα isoforms. Additionally, we compared the transcriptomics of resistant and parental cells in both cell lines and tested how inhibition of key regulators affect the sensitivity against tamoxifen. In this thesis we report that MCF7 and T47D cell lines obtain different mechanisms of tamoxifen resistance, and that the development of tamoxifen resistance is a parallel process with the cell identity switch from luminal to basal. The EZH2 is involved in maintaining the luminal progenitor type of mammary cells, whereas c-Myc is highly expressed in the resistant cell lines. Hence, EZH2 and c-Myc are key players in development of tamoxifen resistance and could be considered as therapy targets in ERα+ breast cancers.
  • Vainio, Jere (2022)
    Anthocyanins are pigment molecules responsible for the majority of flower colors existing in nature. Emerging from the flavonoid biosynthetic pathway, anthocyanin biosynthetic pathway branches into orange pelargonidin derivates, red cyanidin derivates and blue delphinidin derivates. Dihydroflavonol 4-reductase (DFR), a NADPH-dependent oxidoreductase, catalyzes the first anthocyanin specific step after the branching point for all three branches. In some cases, DFR exhibits substrate specificity leading to some flowering plant species’ inability to produce certain colors; like petunias lacking orange colors. Ornamental plant industry thrives on breeding of novel colors and color patterns, and thus understanding of the capabilities of anthocyanin biosynthesis is of key importance. The aim of this study is to gain insight into the amino acid residues causing substrate specificities in Petunia hybrida. The study focused on an amino acid region that has been previously identified as affecting substrate specificities in Gerbera hybrida. To examine the effects of three different mutations in this region, enzyme activity was examined both in vitro and in vivo. Experiments consisted of kinetic assays with protein extracts from infiltrated Nicotiana benthamiana and determination of anthocyanin content from stable transformations of Petunia hybrida. Anthocyanin content was determined from transformed petunia flowers with high performance liquid chromatography. Kinetic assays show distinct substrate specificity profiles for all three mutations, indicating a correlation between the studied residues and substrate specificity. The transformed petunias also exhibited altered anthocyanin content, with two of the three mutant transformants exhibiting increased pelargonidin production. The observed effects of these mutations support the previous results indicating that this region has a role in determining substrate specificities of DFR enzymes.