Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "CAD domain"

Sort by: Order: Results:

  • Larkiala, Taru (2020)
    Calsyntenin-3 is a type I transmembrane protein, that is mainly expressed on the post-synaptic cell membranes. It belongs to the calsyntenin family that is part of the cadherin superfamily. Calsyntenin-3 consists of a cytosolic C-terminal region, a transmembrane domain and an extracellular N-terminal part, that consists of a laminin G-like domain (LNS) and two cadherin domains (CAD). Calsyntenin-3 is mainly expressed in the brain, but it can also be found in the heart, liver, pancreas, lung, skeletal muscle and placenta. Calsyntenin-3 has an effect on neurogenesis by affecting the development of excitatory and inhibitory synapses. It might also play a role in Alzheimer’s disease, as it has been found to be able to bind β-amyloid peptide, that is known to play a key role in the development of Alzheimer’s disease. Calsyntenin-3 acts as a synaptic adhesion protein, that binds to the post-synaptic neurexins with its extracellular region. However, the previous studies have contradicting results regarding the calsyntenin-3 domains that mediate the interaction between the calsyntenin-3 and neurexins. There is also disagreement whether calsyntenin-3 binds neurexin-α, neurexin-β or both. Because of these discrepancies, the aim of this master’s thesis study was to produce the calsyntenin-3 ectodomain constructs that contained either the two CAD domains, the LNS domain or all three domains, using baculovirus mediated protein production in insect cell cultures. These purified protein constructs were meant to be used for the determination of the binding domains. Unfortunately, only the purification of the calsyntenin-3 LNS domain was successful and the purification of the constructs, containing the CAD domains, was unsuccessful. A SEC-MALLS experiment, that was performed for the calsyntenin-3 LNS domain, revealed that it forms dimers in a solution, which is consistent with experiments performed with the LNS domain of human sex hormone‐binding globulin. The second aim of this master’s thesis study was to express the calsyntenin-3 ectodomain constructs on the surface of HEK293T cells and to test the binding between calsyntenin-3 and neurexins in a cell surface binding assay. The results of the cell surface binding assay indicated that the binding is mediated by the calsyntenin-3 CAD domains and that calsyntenin-3 binds to neurexin-α, but the binding to neurexin-β was not detected. However, the results from the cell surface binding assay were conflicting: the binding between the calsyntenin-3 full ectodomain construct and neurexin-α was not detected, but the binding was detected between calsyntenin-3 CAD ectodomain construct and neurexin-α. Therefore, the cell surface binding assay cannot be considered entirely reliable and should be repeated before making further conclusions.