Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "MYC"

Sort by: Order: Results:

  • Savelius, Mariel (2020)
    Breast cancer remains as the leading cause of cancer deaths among women. Triple-negative breast cancer (TNBC) is one of the most aggressive breast cancer subtypes and lacks targetable receptors, consequently, cannot be treated with current hormone of anti-HER2 targeting therapies. Thus, there is a need for discovering novel and well-tolerated therapies. MYC is a proto-oncogene and a transcription factor, that is frequently amplified and overexpressed in breast cancers. MYC is involved in many cellular processes promoting cell proliferation, however, overexpression of MYC can also sensitize cells to replicative stress and apoptotic cell death. In our previous studies we have shown that pharmacological activation of AMPK, a cellular energy sensor, synergises with Bcl-2 family inhibitors, such as navitoclax and venetoclax, and activates MYC-dependent apoptosis in breast cancer cell lines, transgenic mouse models of MYC-dependent mammary tumorigenesis and in MYC-high patient-derived explant cultures (PDECs). In subsequent study we observed, that indirect AMPK activator metformin alone inhibited tumor growth in vivo, but did not induce apoptosis in mouse tumors or in PDECs. Metformin, a type II diabetes mellitus drug, has shown anti-cancer effects in some population studies and is under investigation for a cancer therapies, however the whole mechanism of action in cancer is still not well-known. To elucidate metformin’s effects on MYC overexpressing triple-negative breast cancer cells, I will present, that metformin has anti-proliferative effects and show that long term metformin treatment induces senescence biomarkers in MYC-high TNBC breast cancer cell lines. To study metformin's short and long-term anti-proliferative activity, cell proliferation during and after drug treatment was investigated, which showed, that metformin’s effects do not seem to persist long after drug withdrawal. In conclusion, the key observation of this thesis was, that metformin does inhibit the proliferation of MYC overexpressing cancer cells and presents a senescence phenotype that possibly can be exploited to find new targeted therapies for triple-negative breast cancer patients.
  • Patrikainen, Linda (2023)
    Breast cancer is globally the leading cause of death in women. ER positive, HER2 negative breast cancer is the most common subgroup, covering two thirds of all breast cancer cases. The different isoforms of ERα, ERα66 and ERα36 are responsible of genomic and non-genomic ER signaling respectively. Tamoxifen is one of the most used drugs in ERα+ breast cancer. As a SERM tamoxifen blocks the activity of ERα66, but plays as an agonist for ERα36, which is associated with tamoxifen resistance. Tamoxifen resistance concerns more than 25% patients with ERα+ breast cancer but the molecular mechanisms that lead to development of resistant disease remain uncovered. Thus, the aim of this thesis was to reveal how two different ERα isoforms are used and regulated in tamoxifen resistance in two commonly used ERα+ breast cancer cell lines MCF7 and T47D. We studied the effect of hormones to tamoxifen sensitivity and to utilization of ERα isoforms. Additionally, we compared the transcriptomics of resistant and parental cells in both cell lines and tested how inhibition of key regulators affect the sensitivity against tamoxifen. In this thesis we report that MCF7 and T47D cell lines obtain different mechanisms of tamoxifen resistance, and that the development of tamoxifen resistance is a parallel process with the cell identity switch from luminal to basal. The EZH2 is involved in maintaining the luminal progenitor type of mammary cells, whereas c-Myc is highly expressed in the resistant cell lines. Hence, EZH2 and c-Myc are key players in development of tamoxifen resistance and could be considered as therapy targets in ERα+ breast cancers.
  • Id, Linda (2022)
    Breast cancer is the most common cancer in the world and among women the most cancer deaths causing cancer. MYC is a proto-oncogene, which becomes oncogenic when its expression is deregulated in cancer. MYC is commonly overexpressed in human tumours and this alteration is associated with aggressive cancer phenotype. Furthermore, alterations in the MYC network have been found in the great majority of breast cancers. MYC promotes mitochondrial apoptosis causing a cancer vulnerability, however, in cancer cells the apoptosis is often prevented by antiapoptotic BCL-2 family members. In this study, cell viability and cell death analysis of treated triple-negative breast cancer cell lines together with dendritic cell activation experiments were conducted. This study aimed to find the most potent BCL-2 family antagonist (BH3 mimetic) to combine with metformin to overcome the antiapoptotic BCL-2 family proteins inhibition of MYC-induced apoptosis. In addition, this study determined whether the combinations could induce immunogenic cell death to further intensify cancer cell killing through anti-tumour immunity. In this study, BH3 mimetics combined with metformin were found to induce cell death and reduce cell viability in TNBC cell lines. In addition, metformin and BH3 mimetics were found to activate dendritic cells directly and through immunogenic cell death of cancer cells. However, no MYC-dependent cell death or immunogenic cell death were observed, and this study was unable to indicate the most potent BH3 mimetic to combine with metformin.