Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "Tropomyosin-related kinase B (TRKB)"

Sort by: Order: Results:

  • Voipio, Mikko Emil Olavi (2020)
    Nitric oxide (NO) is an important signalling molecule in the brain. NO regulates the function of many proteins by e.g. interacting with tyrosine and cysteine residues, thus inducing post-translational modifications. In animal models, inhibition of NO production triggers behavioural effects similarly to those induced by antidepressant drugs. Receptor tropomyosin-related kinase B (TRKB) has been identified as a key player mediating antidepressant drug (AD) induced effects, and it’s a potential target for NO since it displays multiple potential sites for nitration. Preliminary results from our group indicate that TRKB nitration impairs its signalling, and AD uncouple many proteins from TRKB and reorganizes TRKB protein complex. We examined the effect of selective nitric oxide synthase (NOS) inhibitor N⍵-propyl-L-arginine (NPA) in mice submitted to the contextual fear conditioning and found out that inhibiting NO production with NPA has an antidepressant-like effect on mice. We also found out that AD fluoxetine prevents nitration of TRKB receptors in vivo and antidepressant drugs fluoxetine, phenelzine and imipramine disrupt the interactions of TRKB, NOS1 and NOS1 adaptor protein (CAPON) in co-immunoprecipitation assay. To understand the nature of TRKB and NOS1 interaction, we thus examined the protein domains in NOS1 and TRKB using Uniprot database, and we were unable to identify sites that could interact directly. Literature search for NOS1 adapting proteins followed by Uniprot data mining indicated CAPON as a potential candidate to mediate NOS1: TRKB interaction. Our data shows for the first time that antidepressant drugs disrupt TRKB:CAPON:NOS1 interaction, thus protecting TRKB from NOS1-induced nitration. ADs might induce their behavioural effects by preventing NO-induced impair in TRKB signalling