Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "cancer"

Sort by: Order: Results:

  • Kozlova, Anastasia (2023)
    Chimeric antigen receptor (CAR) T cells are genetically modified usually autologous T cells expressing de novo designed CAR that binds a specific antigen on the surface of the cancer cells, inducing T cell receptor-independent activation and cytotoxic response against the targeted cancer cells. While CAR T cells have been shown to offer effective treatment in acute lymphoblastic leukemia, diffuse large B-cell lymphoma, and multiple myeloma, several resistance mechanisms can lead to CAR T cell exhaustion characterized by impaired functions and the expression of inhibitory receptors. The Finnish Red Cross Blood Service has developed novel CARs, differing in structure from the ones currently published. Since the evasion of CAR T cell exhaustion is considered one of the key objectives in the development of CAR T cell therapy, this Master’s thesis project aimed to create a working method to determine the exhaustion of CAR T cells in vitro after long-term repeated stimulation. In order to induce and measure exhaustion, CAR T cells were produced and activated ex vivo in the presence of IL-2 or IL-7/IL-15 cytokines, cultured long-term and repeatedly stimulated by exposure to target cells. CAR T cell cytotoxicity and expansion were determined and the expression of various inhibitory receptors was analyzed. The method enabled the comparison of the designed CAR T cell candidates and the positive control CD19-CD28ζ CAR T cells in long-term cytotoxic potency. In addition, it helped to reveal the surprising difference between IL-2 and IL-7/IL-15 cytokines and their impact on CAR T cell exhaustion. Although CAR T cells produced with IL-2 had poorer expansion during CAR T cell production than CAR T cells produced with IL-7/IL-15, they showed lower expression of exhaustion-related markers supported by better survival, proliferation and cytotoxic activity during long-term repeated stimulation assay.
  • Tiusanen, Ville (2021)
    Enhancers are important regulatory elements of DNA, that are bound by transcription factors (TFs) to regulate gene expression. Enhancers control cell type specific gene expression and they can form structures called super-enhancers, that consist of multiple normal enhancers and are bound by high numbers and variety of transcription factors. These super-enhancers are important for defining cell identity and changes in the super-enhancer landscape have been linked to different cancers. In this project, characterization of super-enhancers and their transcription factors composition between primary and cancer cells were studied using genome-wide next-generation sequencing data from multiple assays, such as ChIP-seq, RNA-seq and ATAC-seq. The focus of the project was on the data processing and analysis to identify and characterize the super-enhancers. Analyses included GSEA, heatmap binding analysis, peak and super-enhancer calling and IGV analysis. This project used pancreatic HPDE cell line for primary cells and different cancers with endodermal origin as cancer cell lines. The goal of the thesis was to try show characteristic features of super-enhancers and their features in normal and cancer cells. Data analysis showed that distinct super-enhancers can be identified in cancer cells and defined super-enhancers had typical strong binding for specific transcription factor and histone modification such as histone 3 lysine 27 acetylation (H3K27ac) mark of active enhancers. Super-enhancer regions were located in highly accessible chromatin regions of the genome, and genes that were associated with HPDE super-enhancers could be shown to have association with cell identity. Peak and super-enhancer calling counts varied between cell lines for transcription factors, histone modifications and super-enhancers. Visualization of super-enhancers was successful and could show transcription factor binding and active enhancers that establish the super-enhancer structure. Comprehensive analyses allowed us to characterize typical features of super-enhancers and show differences in the numbers of super-enhancers between primary and cancer cell lines and cancer cell lines of different organ types. Analysis of the transcription factor binding showed unique peaks on some of the super-enhancers, and these peaks might have a role in inducing the super-enhancer structure.
  • Kyriacou, Mikael Sakarias (2021)
    MLH1 is a gene that codes for one of the four mismatch repair (MMR) proteins alongside MSH2, MSH6, and PMS2. The main function of the MMR proteins is to recognize base mismatches and insertion-deletion loops formed during DNA replication and aid in their excision. Inherited heterozygous pathogenic variants in any of the four MMR genes lead to Lynch syndrome, an inherited cancer syndrome that predisposes to multiple different cancer types, most notably colorectal cancer. Loss of the expression of an MMR gene causes MMR-deficiency, which leads to microsatellite instability, the accumulation of mutations in microsatellite regions of the DNA. The higher mutational burden caused by MMR-deficiency is thought to be the main driving force of genomic instability and tumorigenesis in MMR-deficient cells. In addition to MMR, MLH1 and the MMR machinery have roles in other anticarcinogenic cellular processes, such as DNA damage signaling and DNA double-strand break repair. Recently, MLH1 has also been shown to have a significant role in regulating mitochondrial metabolism and oxidative stress responses. The identification of MMR-proficient tumors in Lynch syndrome patients begs the question whether the lower amount of functional MLH1 observed in MLH1 mutation carriers could cause problems with these functions and pose alternative routes to tumorigenesis. In line with this, it has been shown that the role of MLH1 in cell cycle regulation in DNA damage signaling is notably more sensitive to decreased amount of the protein compared to its role in MMR. The main goal of the thesis was to study the effects of decreased MLH1 expression on gene expression, cellular functions, and possible alternative tumorigenic pathways. In order to achieve this, the coding transcriptome of human fibroblast cell lines expressing MLH1 at different levels was sequenced and the resulting data analyzed. The study revealed that decreased MLH1 expression affects cellular functions associated with mitochondrial function and oxidative stress responses in cells with functional MMR. Particularly NRF2-controlled cytoprotective defence systems were observed to be downregulated. Decreased MLH1 expression was also observed to affect several cellular functions associated with reorganization of the cytoskeleton and interactions with the extracellular matrix. These results strengthen the recently made notions that MLH1 has a role in controlling the function of mitochondria and in mitigating oxidative stress, and that these two functions are connected. The study also brings to light new information on the possible role of MLH1 in controlling the organization of the cytoskeleton, which has previously received little attention. Dysfunction of mitochondria, increased oxidative stress, and reorganization of the cytoskeleton, as a result of decreased MLH1 expression, could pose events that facilitate malignant transformation of cells prior to the total loss of MMR function.
  • Martins, Beatriz (2020)
    According to the latest estimations, cancer is the second leading cause of death worldwide. Despite the significant advances in the range of drugs and treatment modalities to treat cancer, the number of deaths is estimated to continue rising, posing serious challenges for the patients, their families, and the healthcare systems. Conventional treatments tend to be associated with severe adverse side effects and treatment resistance. Consequently, safer and more efficient therapy options are urgently needed, especially for the treatment of metastatic tumors refractory to conventional treatments. A new and revolutionizing field in oncology is immunotherapy, in which oncolytic viruses are included. Oncolytic viruses have an inherent or acquired selectivity to replicate exclusively in tumor cells, ultimately destroying them. Simultaneously, they also activate the dormant host’s immune system to fight against the tumor. Adenoviruses, particularly, have shown to be safe, inducing only mild adverse side effects in clinical trials, making them a great candidate for further clinical development. Adenoviruses can be genetically modified to increase their infectivity or improve the anti-cancer immune responses induced by the virus, e.g., through the expression of immunostimulatory molecules. The focus of this thesis was to develop and characterize several genetically modified oncolytic adenoviruses expressing either OX40L alone or OX40L and CD40L, two co-stimulatory molecules capable of engaging both the innate and adaptive arms of the immune system to fight the tumor. The insertion of the transgenes into the E3B-14.7k region of the Ad5/3-∆24 adenovector plasmid was performed using Gibson Assembly® cloning approach. After successful cloning, the recombinant viral genomes were transfected into A549 cells for viral amplification, followed by CsCl purification to produce a high titer viral preparation. The expression of the transgenes was studied in vitro by ELISA and functional assays, showing promising expression levels of functional OX40L and CD40L. However, when the infectivity and virus killing potency were analyzed, in vitro by immunocytochemistry and MTS assay; and in vivo using an immunodeficient mouse model, the data showed that the cloned viruses performed sub-optimally when compared to the control unarmed virus (Ad5/3-∆24). These findings suggest that the insertion of the two transgenes in place of the E3-14.7k gene was detrimental to the fitness of the virus.
  • Raza, Shaffaq (2020)
    Growth differentiation factor 15 (GDF15), a member of TGF-β super family is a soluble cytokine that is associated with different pathological conditions including cancer, cardiac and renal failure and obesity. Its high serum levels are linked with symptoms like cachexia/anorexia in cancer patients and can be used as a marker for these diseases. Its crucial role in weight regulation and energy homeostasis has been demonstrated by treating obese mice with GDF15, which results in weight lose along with improved glucose metabolism and increased insulin tolerance. It is now known that GDF15 exerts its metabolic effect by binding to a GDNF receptor -α-Like (GFRAL) receptor along with co-receptor RET. Interestingly, these two receptors co-localize only in the brain stem area of mice and humans indicating involvement of a neuronal circuit in GDF15 mediated effects. Despite its implications in major health disorders, little is known about the interaction of GDF15 with its receptors and how this interaction in turn modulates different cellular signalling and functions. The aim of the thesis was to study the mechanism and factors involved in endocytosis of GDF15. I employed high content imaging and flow cytometry techniques to visualize and analyse the internalization of ligand-receptor complex and investigate the role of actin, dynamin and phosphoinositide 3 kinase in the process. The results suggest that similar to the internalization of other cellular growth factors, the uptake of GDF15 is affected by disruption of the actin cytoskeleton. The role of dynamin is still unclear. I also discovered that the internalization of GDF15 was inefficient even in cells that expressed the receptor GFRAL, with large cell-to-cell variation. By following the intracellular localization of the receptor GFRAL, my results revealed that the receptor GFRAL is not efficiently exported to the plasma membrane and most of the protein is retained in the Golgi compartment of cells. This phenomenon was stronger in murine fibroblast cells, where the receptor was almost exclusively trapped in the secretory compartment, explaining why the uptake of the ligand GDF15 is so inefficient in these cells. The system developed during this project will now be used to analyse different factors involved in the uptake of GDF15 and eventually uncover the possible endocytic pathway. Moreover, the Golgi retention of the receptor opens up new questions to investigate like whether the physiological function of GDF15 is regulated by receptor export signals. This will help deciphering the complex and mysterious interaction of GDF15 with its receptor GFRAL.
  • Savelius, Mariel (2020)
    Breast cancer remains as the leading cause of cancer deaths among women. Triple-negative breast cancer (TNBC) is one of the most aggressive breast cancer subtypes and lacks targetable receptors, consequently, cannot be treated with current hormone of anti-HER2 targeting therapies. Thus, there is a need for discovering novel and well-tolerated therapies. MYC is a proto-oncogene and a transcription factor, that is frequently amplified and overexpressed in breast cancers. MYC is involved in many cellular processes promoting cell proliferation, however, overexpression of MYC can also sensitize cells to replicative stress and apoptotic cell death. In our previous studies we have shown that pharmacological activation of AMPK, a cellular energy sensor, synergises with Bcl-2 family inhibitors, such as navitoclax and venetoclax, and activates MYC-dependent apoptosis in breast cancer cell lines, transgenic mouse models of MYC-dependent mammary tumorigenesis and in MYC-high patient-derived explant cultures (PDECs). In subsequent study we observed, that indirect AMPK activator metformin alone inhibited tumor growth in vivo, but did not induce apoptosis in mouse tumors or in PDECs. Metformin, a type II diabetes mellitus drug, has shown anti-cancer effects in some population studies and is under investigation for a cancer therapies, however the whole mechanism of action in cancer is still not well-known. To elucidate metformin’s effects on MYC overexpressing triple-negative breast cancer cells, I will present, that metformin has anti-proliferative effects and show that long term metformin treatment induces senescence biomarkers in MYC-high TNBC breast cancer cell lines. To study metformin's short and long-term anti-proliferative activity, cell proliferation during and after drug treatment was investigated, which showed, that metformin’s effects do not seem to persist long after drug withdrawal. In conclusion, the key observation of this thesis was, that metformin does inhibit the proliferation of MYC overexpressing cancer cells and presents a senescence phenotype that possibly can be exploited to find new targeted therapies for triple-negative breast cancer patients.
  • Lassila, Marika Jenna Janina (2022)
    Colorectal cancer (CRC), which refers to the cancer of the colon and the rectum currently ranks as the second leading cause of cancer related death worldwide and as the third most common form of cancer in both males and females. The latest reports show that approximately 10% of all new cancer cases globally are diagnosed as CRC annually. Initiation of sporadic CRC is commonly caused by somatic mutations causing the loss of function of the tumor suppressor gene APC. This leads to aberrant activation of the canonical Wnt signalling pathway. The ApcMin/+ mice model the progression of CRC as they carry a constitutive heterozygous nonsense mutation in Apc allele and develop intestinal adenomas. TCF/LEF transcription factor family members are best known as the main downstream effectors of canonical Wnt signalling. In the presence of nuclear β-catenin, TCF/LEF proteins bind to it through their β-catenin-binding domain and activate the transcription of Wnt target genes. The TCF7 gene encodes several isoforms of TCF1 protein, which are traditionally divided into long and short isoforms, transcribed from different promoters. Previously, it has been shown that Tcf7 deletion (Tcf7-/-) in ApcMin/+ mice increases the formation of adenomas. The aim of my study is to better understand the role of Tcf7 and its isoforms in CRC tumorigenesis. To study the Tcf7 deletion in intestinal adenoma development, ApcMin/+; Tcf7mut/mut; Villin CreERT2 mouse strain was established. The expression of the full-length isoforms (p45) is constitutively prevented in the Tcf7mut/mut mice. Moreover, tamoxifen administration to these mice led to the deletion of all isoforms in the intestinal epithelium. The number of intestinal tumors, their sizes and the survival of the Tcf7 deleted ApcMin/+ mice were analyzed and compared to ApcMin/+ mice. Intestinal tissues of the mice were collected after euthanasia. The tissue samples were preserved in paraffin, and later cut into sections for IHC, stained and imaged. The deletion of Tcf7 was confirmed at the RNA level by qPCR, and at the protein level by immunohistochemistry (IHC). IHC and single-cell RNA sequencing was used to further analyze the effect of Tcf7 deletion in mouse intestinal adenomas. The deletion of all Tcf7 isoforms or only the p45 isoforms in ApcMin/+ mice increased robustly the numbers of intestinal tumors. IHC analysis of the intestinal adenomas showed that the deletion of p45 isoforms was sufficient to cause a dramatic decrease in total Tcf1 expression in the adenoma cells. These results were supported by the qPCR results. In summary, our results lead us to believe that the deletion of p45 isoforms causes an acceleration of tumorigenesis in the adenoma model. Without the Apc mutation, the mice did not develop intestinal adenomas. Interestingly, the expression of the Wnt-target gene Prox1 in intestinal adenomas was decreased when Tcf7 was deleted. We next aim to optimize our protocol for single cell dissociation of adenomas and re-run the single-cell RNA sequencing analysis for further analysis of the mechanisms behind the increased tumorigenesis.