Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "massaspektrometria"

Sort by: Order: Results:

  • Fredrikson, Linda (2019)
    The consumption of omega (n-) 3 polyunsaturated fatty acids (PUFA) from fish has been associated with lower rates of cardiovascular diseases with one mechanism being lowering LDL cholesterol levels in blood. When incorporated into LDL particle n-3 PUFAs can modify the lipid composition and reduce atherogenicity of the particle, e.g. by influencing inflammatory processes. The effects of n-3 PUFA of plant origin are less studied. This study investigated the effects of Camelina sativa oil (CSO), a rich source of alpha-linolenic acid (ALA), on lipid species of human LDL including phosphatidylcholines (PC), lysophosphatidylcholines (LPC), sphingomyelin (SM), triacylglycerols (TAG) and cholesterol esters (CE). A total of 38 subjects with a history of impaired fasting glucose, were randomly divided into two groups; CSO (ALA 10 g/day) and the control group (limited fish and ALA intake) for 12 weeks. Blood samples were collected from the subjects at the beginning and at the end of the experiment after 12 weeks. LDL particles were isolated from blood and the lipids were analyzed by mass spectrometry. The CSO affected more the LDL core lipids (TAG and CE) than lipid species of the shell (PC, LPC, SM). CSO is high in ALA and linoleic acid (LA). Thus, the diet reduced mole fractions of lipid species containing saturated acyl chains while acyl chains in the core lipids with ALA, LA and EPA, that is formed in the body from ALA, were increased. Based on the results, having CSO in the diet changed the LDL particle lipid composition in a favorable direction for cardiovascular health.
  • Kontro, Hilkka (2012)
    Core-fucosylation of N-glycoproteins is associated with different cancers and other pathologies. Identification of glycoproteins and determination of their glycan structure manually by mass spectrometry (MS) is time-consuming and laborious. In this Pro gradu thesis, the use of the mass spectrum-analyzing software Glycopeptide ID for identification of core-fucosylation from a known standard, immunoglobulin G, was studied. Also, a plasma sample with unknown glycoproteins was analyzed. For the MS analysis, the proteins were digested with trypsin, and the resulting glycopeptides were enriched using lectin affinity chromatography. From IgG and plasma, also samples treated with α-Lfucosidase were prepared in order to cleave the core fucose. The presence of glycopeptides was determined by high-performanve liquid chromatographymass spectrometry (HPLC-MS) analysis, and they were fragmented using collision-induced dissociation (CID) in a tandem-MS (MS/MS) analysis. The MS/MS spectra were analyzed with the Glycopeptide ID software. The software was found to identify core-fucosylation reliably from high-quality spectra, but identification of proteins were often incomplete from spectra with poor quality. From the plasma sample with unknown proteins, a probable corefucosylation was found from IgG2, fetuin A, serotransferrin, hemopexin and ceruloplasmin. As a conclusion, the software Glycopeptide ID can be considered as an appropriate tool for identification of core-fucosylation in N-glycopeptides.