Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "prostate cancer"

Sort by: Order: Results:

  • Koskinen, Netta (2022)
    SerpinE2 is a serine protease inhibitor (serpin) family protein that inhibits several extracellular proteases, such as thrombin, urokinase-type plasminogen activator and trypsin. Proteases and their inhibitors are often involved in cancer. SerpinE2 transcripts are upregulated in several cancers and found to predict poor prognosis of cancer patients. However, such studies regarding protein levels of serpinE2 are scarce. In this study, serpinE2 protein was analysed in three urological cancers, with patient groups that address the greatest needs for clinical biomarkers. The major aim of this study was to examine the association of serpinE2 staining with patient survival and clinicopathological features in prostate, urinary bladder and kidney cancers, and to evaluate its usability as an immunohistochemical biomarker. Tissue microarray slides from cancer patient tissues were stained immunohistochemically for serpinE2. The staining intensity was scored with four-point scale from 0 (no staining) to 3 (very intensive staining). Prostate and kidney cancer patients had been treated surgically and some of the cancers had relapsed after the surgery. In bladder cancer, association of serpinE2 with treatment response to neoadjuvant chemotherapy was evaluated. SerpinE2 expression was also measured in two prostate cancer cell lines with quantitative PCR and Western blotting. The serpinE2 staining was observed both in cancer cells and epithelial structures of benign tissues. The results showed that cancer tissue serpinE2 is not associated with relapse, treatment response or survival in prostate and bladder cancer patients. However, serpinE2 staining was more pronounced in prostate cancer tissues compared with benign tissues adjacent to cancer, and, surprisingly, the staining in such benign tissues was stronger in tissues from patients who developed metastases after surgery as compared to those without detectable metastases during 10.3-year (median) follow-up (p = 0.017). In addition, higher serpinE2 staining intensity was observed in higher grade bladder cancers (p = 0.034). In kidney cancer, on the other hand, serpinE2 staining intensity was significantly lower in patients whose cancer relapsed (p = 0.048), and high intensity predicted favourable disease-specific survival (p = 0.013). To conclude, serpinE2 is worth of further investigation in urological cancers. In prostate cancer, the possible field effect of cancer on serpinE2 in adjacent benign tissues could be examined more closely. In kidney cancer, the impact of serpinE2 on patient survival was inverse compared to transcript data in the Cancer Genome Atlas/the Human Protein Atlas database, and most other cancers. Thus, further validation studies need to be performed, and if the results hold true, serpinE2 staining could be used as part of a prognostic model predicting kidney cancer-specific survival.
  • Kurki, Veera (2024)
    Prostate cancer is one of the most common cancers diagnosed in men. Somatic copy number alterations (SCNA), such as the deletion of PTEN or NKX3.1 and the amplification of MYC, have been associated with prostate cancer progression and could serve as potential biomarkers during diagnosis. One approach to utilize this information would involve screening a large number of prostate tissue sections for SCNAs and subsequently validating the findings using a secondary method. This process could enable more personalized treatment options for cancer patients. This thesis aimed to create a robust and reproducible workflow for SCNA identification. This was achieved by optimizing a chromogenic immunohistochemistry (IHC) protocol using immunostaining chambers and open-source 3D-printed laboratory hardware. The optimized protocol was then transferred to an automated liquid handling robot, and a panel of three antibodies for PTEN, NKX3.1, and MYC was developed for SCNA screening with IHC. Additionally, a chromogenic in situ hybridization (CISH) protocol was optimized to validate the results of the IHC. The immunostaining chambers required a lower antibody dilution to perform comparably to the manual IHC stainings. The automated protocol using the liquid handling robot produced high-quality stains with optimized dilutions. The optimized CISH protocol successfully identified the presence of the target gene, but unclear signals and merging of the signals obstructed detailed analysis. While complete deletion of PTEN was detectable, determining the number of gene copies per cell proved challenging due to signal variability and sample-dependent problems. Further optimization of the CISH protocol or development of an automated analysis workflow tailored to address these challenges is needed for more accurate analysis.