Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "synapse"

Sort by: Order: Results:

  • Moliner, Rafael (2019)
    Classical and rapid-acting antidepressant drugs have been shown to reinstate juvenile-like plasticity in the adult brain, allowing mature neuronal networks to rewire in an environmentally-driven/activity-dependent process. Indeed, antidepressant drugs gradually increase expression of brain-derived neurotrophic factor (BDNF) and can rapidly activate signaling of its high-affinity receptor TRKB. However, the exact mechanism of action underlying drug-induced restoration of juvenile-like plasticity remains poorly understood. In this study we first characterized acute effects of classical and rapid-acting antidepressant drugs on the interaction between TRKB and postsynaptic density (PSD) proteins PSD-93 and PSD-95 in vitro. PSD proteins constitute the core of synaptic complexes by anchoring receptors, ion channels, adhesion proteins and various signaling molecules, and are also involved in protein transport and cell surface localization. PSD proteins have in common their role as key regulators of synaptic structure and function, although PSD-93 and PSD-95 are associated with different functions during development and have opposing effects on the state of plasticity in individual synapses and neurons. Secondly, we investigated changes in mobility of TRKB in dendritic structures in response to treatment with antidepressant drugs in vitro. We found that antidepressant drugs decrease anchoring of TRKB with PSD-93 and PSD-95, and can rapidly increase TRKB turnover in dendritic spines. Our results contribute to the mechanistic model explaining drug-induced restoration of juvenile-like neuronal plasticity, and may provide a common basis for the effects of antidepressant drugs.
  • Karmila, Nelli (2022)
    Schizophrenia is a debilitating psychiatric disorder associated with reduced life expectancy. The biological mechanism of schizophrenia is nebulous; however, many findings point to the central nervous system and neurons, where a reduction in dendritic spines has been indicated by previous research. The genetic findings support the involvement of synapses in the pathogenesis of schizophrenia. To study the biological properties stemming from genetics, relevant model systems and efficient methods are needed. Induced pluripotent stem cell (iPSC) technology offers a robust method for modeling the biological processes underlying schizophrenia. Somatic cells, e.g. fibroblasts, can be reprogrammed back to a pluripotent state resembling embryonic stem cells, and further differentiated into any cell type of the body, which might not be otherwise accessible. This allows establishing and characterizing neuronal cultures from patient and control cell lines, potentially revealing biological differences associated to the disease phenotype. The field of schizophrenia research has adopted iPSC technology and multiple studies have been conducted. These include assessments of synaptic density in the produced neuronal cultures, many of which reported decreased density associated with schizophrenia. In this thesis, a modified version of Nehme et al. (2018) protocol was used to differentiate iPSCs into neurons in co-cultures with human iPSC-derived astrocytes. The overarching aim was to construct an immunocytochemistry (ICC) -based assay to measure synaptic density in the produced co-cultures. First, suitable markers for characterization by ICC were tested and selected. The markers were selected to inform about neuronal identity, maturity, and synapses of the differentiated neurons. Next, the culturing conditions were optimized regarding the cell density and coating of the culturing wells. Finally, to estimate the utility of the assay, a pilot study was performed with three cell lines derived from a healthy control and a monozygotic twin pair discordant for schizophrenia. iPSCs from these cell lines were differentiated into neurons in co-cultures with astrocytes, and then characterized with ICC using selected markers and image analysis software. The synaptic density was quantified for each cell line. The performance of the assay was evaluated with analysis of variance (ANOVA) and restricted maximum likelihood model (RELM). An assay to quantify synaptic structures in mature neurons was established. The average synaptic density for all cell lines was approximately 1 synapse per 100μm of neurite. Analysis of the data produced with the assay revealed a notable batch effect and technical variation. This suggests that further optimization is needed to reduce variance from undesired sources. The pilot data suggests that the differences in synaptic density between cases and controls may be modest, further highlighting the need for minimizing noise in the assay to improve signal to noise ratio. However, indicated by power analysis, large sample sizes are needed to identify meaningful differences between cases and controls. In light of these results, more attention should be drawn to the methodology in the field of iPSC-based studies, as the principals of the assay constructed here were similar to other synaptic assays used in previous publications.
  • Rydgren, Emilie (2018)
    Kainate receptors (KARs) are glutamate receptors that modulate neurotransmission and neuronal excitability. They assemble from five subunits (GRIK1-5 or GluK1-5) present at both pre- and postsynaptic membranes. KAR function is regulated by neuropilin and tolloid-like (NETO) proteins, which also regulate postsynaptic GRIK2 abundance. Some KAR subunit gene variants associate with psychiatric disorders. Moreover, Grik1, Grik2 and Grik4 knock-out (KO) mice display changes in anxiety- and fear-related behaviours. In previous work, Neto2 KO mice expressed higher fear and impaired fear extinction in the fear conditioning paradigm. We hypothesised that this phenotype could be due to reduced KAR subunit abundance in fear-related brain regions, i.e. ventral hippocampus, amygdala and medial prefrontal cortex (mPFC). We specifically investigated GRIK2/3 and GRIK5 levels in the subcellular synaptosomal (SYN) fraction using western blot. We did not observe any difference between genotypes in any of the brain regions. However, our statistical power may have been insufficient, particularly for amygdala and mPFC. Also, an effect on synaptic KAR subunit abundance might be specific to either pre- or postsynaptic compartment, and thus more difficult to detect in SYN fractions. Alternatively, NETO2 absence may affect KAR actions instead of their subunit levels in fear-related brain regions, which could be examined through electrophysiological recordings. Ultimately, unravelling how a molecular system without NETO2 gives rise to fear behaviour in mice may lead to a better understanding of fear-related disorders in human and to new therapeutic strategies.