Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by study line "Biofarmasia"

Sort by: Order: Results:

  • Rautiainen, Swarna (2020)
    Endothelial dysfunction is a common characteristic of several diseases including diabetes mellitus, coronary heart disease and stroke. Healthy endothelium ensures vascular homeostasis, regulation of blood flow and the exchange of oxygen and nutrients, as well as immune cell filtration to the surrounding tissues. In many cases, endothelial dysfunction results in ischemia in the surrounding tissues impairing cellular regeneration mechanisms, which can lead to tissue necrosis in the worst case. Therapeutic angiogenesis via stem cell transplantation aims to restore tissue blood flow and thus aid in tissue regeneration and restoration of a functioning tissue. Adipose derived stem/stromal cells (ASC) are a stem cell population with a multilineage differentiation ability. They have been shown to differentiate towards adipogenic, osteogenic, chondrogenic, myogenic and neurogenic lineages among others. Their easy obtainability from liposuction material and abundance in the adipose tissue makes them an especially practical and favorable cell option for stem cell research. In angiogenesis research, ASCs are commonly used in a co-culture with an endothelial cell (EC) type such as human umbilical vein endothelial cell. ASCs secrete extracellular vesicles (EV) that are small membrane bound vesicles with a diameter ranging from 40-1000 nm, and which have the ability to alter the behavior of target cells through their cargo. EV cargo consists of microRNAs, messenger-RNAs and proteins, and the EV cargo of ASCs has been shown to have proangiogenic effects. The aim of this work was to review what is currently known about ASC ability to promote angiogenesis through paracrine secretion and differentiation into endothelial cells or pericytes, interactions between ASCs and endothelial cells in the angiogenesis promoting process and the role of ASC extracellular vesicles in promoting angiogenesis. The methods for this work were database research of related articles using scientific databases and search engines, article categorization and reading, and finally manuscript production. It can be concluded from the current literature that a co-culture environment of ASCs and an endothelial cell type supports the formation of tube-like structures in vitro. Additional insulin like growth factor 1 in culture medium enhances the expression of angiogenesis-related growth factors in both cell types via PI3K/AKT signaling pathway. Further, the activation of platelet derived growth factor receptor β supports ASC ability to promote vascular network formation. On the contrary, the presence of ASC secreted activin A results in the inhibition of vascular network formation. ASCs can differentiate into endothelial cells particularly in three-dimensional culture conditions. In addition, fibroblast growth factor 2 and the activation of the AKT-pathway are crucial for endothelial differentiation. In addition, ASCs have the ability to differentiate into pericytes and assume a stabilizing role on the outside of the microvessels. Concerning ASC derived EVs and their cargo, miR-31, miR-125a and miR-126 have proangiogenic effects in vitro and in vivo. Proangiogenic miRNAs in ASC EV cargo are miR-181b-5p and the let7-family, out of which miR-181b-5p upregulates vascular endothelial growth factor and hypoxia-inducible factor 1α and let7-family influences tube formation ability of ECs. In vivo, ASC derived EVs support fat grafting, enhance wound healing both in healthy and diabetic environment, and provide cardioprotection. Therefore, ASC EVs show potential for therapeutic angiogenesis but currently there is a lack of clinical trials in EV research.
  • Nurmi, Kurt (2022)
    Viral promoters are an essential part of a normally functioning virus. Their main task is to drive the transcription of genes which govern hijacking of cell function and replication of viral particles. In addition to supporting normal function of a virus, they can be used to drive the transcription of transgenes which can be used in different therapies. In oncolytic therapies, transgenes can be used to prime the host system against neoplasms which has been shown to generate long term anti-tumour immunity. Human adenoviruses (Ad) are commonly used as a platform for oncolytic virotherapies. Human Ad’s replicate poorly in mouse tumour cell lines, yet some promoters, which are included in the viral constructs to drive the transcription of beneficial transgenes, are able to function. Currently it is unknown whether E3, the native promoter of adenovirus 5 of the E3 region, is capable of functioning in murine cell lines. In this thesis we study whether human cytomegalovirus promoter (CMV) and E3 differ in their efficacy to drive the transcription of the mOX40L and mCD40L transgenes. In the experimental part of this thesis, we compared the efficacies of two viral promoters, AdE3 and AdCVM, in transcribing mOX40Land mCD40L in vitro. Efficacy of transcription was assessed through immunofluorescence and flow cytometry in human and murine cell lines. Furthermore, the effects of promoters on viral infection, killing and replication were evaluated in burst assay and the colorimetric MTS proliferation assay. MTS and burst assay were conducted to confirm if viral infection, killing and replication occurs in human and murine cell lines. Both AdE3 and AdCMV were able to infect and kill human cell lines and cell viability decreased in correlation to the number of viral particles used. In murine cell lines, no decrease in cell viability was detected in the 4T1 cell line. In burst assay, viral replication was observed for both AdE3 and AdCMV in the human MDA-MB-436 cell line. In murine CT26 cell line, no replication was observed for AdE3 or AdCMV constructs. Immunofluorescence assay was performed to visualize transgene expression and localization. Results indicated that mOX40L was localized on cell surface while mCD40L was detected both outside and inside of the cytosolic compartment. Flow cytometry results revealed that both AdE3 and AdCMV constructs are capable of efficiently transcribing mOX40L in human cell lines. In the flow cytometry results for AdE3, two large cell populations with different fluorescence intensities were detected. AdCMV lacked this feature which is postulated to be due to higher lytic activity of the viral construct. In murine cell lines, HCMV could produce mOX40L, but production in murine cell lines was severely attenuated compared to human cell lines. mOX40L produced by the AdE3 construct did not differ from the baseline and was deemed incapable of producing mOX40L in murine cell lines. For the purpose of studying novel virotherapeutics the results of this thesis would indicate that human CMV can be used to drive expression of transgenes in murine cell lines. Despite this, it is preferable to use host specific viruses and promoter sequences for a better translation between mice and humans. Viruksen promoottorit ovat keskeisessä osassa toimintakykyisessä viruksessa. Virus promoottorin päätarkoituksena on geenien transkriptio, mitkä vastaavat solun keskeisten toimintojen kaappaamisesta ja virus partikkeleiden replikaatiosta. Näiden toimintojen lisäksi promoottoreita voidaan käyttää transgeenien transkriptiossa, mitä voidaan hyödyntää sairauksien hoidossa. Onkolyyttisissä terapioissa transgeenejä voidaan käyttää virittämään kehon immuunipuolustus taistelemaan kasvainkudosta vastaan. Ihmisen adenovirusta käytetään usein onkolyyttisten viroterapioiden alustana. Ihmisen adenovirus (Ad) replikoituu hyvin heikosti hiiren syöpäsoluissa, mutta osa adenovirukseen sisälletyistä eksogeenisistä promoottoreista, joita käytetään terapeuttisten transgeenien transkription ajamiseen, kykenee toimimaan ja tuottamaan haluttua proteiinia. Tällä hetkellä ei tiedetä, kykeneekö E3, joka on adenoviruksen E3 lokuksen promoottori, toimimaan hiiren solulinjoissa. Tässä tutkielmassa selvitämme ihmisen sytomegalovirus promoottorin (CMV) ja E3 eroa niiden tehossa ajaa mOX40L ja mCD40L transgeenien transkriptiota. Kokeellisessa osuudessa vertailimme kahden virus promoottorin, E3 ja CMV, eroa niiden tehossa ajaa mCD40L ja mOX40L transkriptiota in vitro. Transkription tehoa tutkittiin immunofluoresenssin ja virtaussytometrian avulla ihmisen ja hiiren syöpäsolulinjoissa. Tämän lisäksi promoottorien vaikutusta virus infektioon, replikaatioon ja kykyyn tappaa soluja arvioitiin burst kokeella ja kolorimetrisellä MTS menetelmällä. MTS ja burst kokeiden avulla varmistettiin AdE3 ja AdCMV virusten kyky infektoida, tappaa ja replikoitua ihmisen ja hiiren syöpäsolulinjoissa. Sekä Ad3 ja AdCMV todettiin kykenevän infektoimaan ja tappamaan ihmissyöpäsoluja ja solujen viabiliteetin lasku korreloi virus partikkeleiden määrän kanssa. Hiiren 4T1 syöpäsoluissa ei todettu solujen viabiliteetin laskevan. Burst kokeessa havaitsimme sekä AdE3 että AdCMV kykenevän replikoitumaan ihmisen MDA-MB-436 solulinjassa. Hiiren CT26 solulinjassa kummankaan viruksen ei havaittu kykenevän replikoitumaan. Immunofluoresenssi kokeessa visualisoimme transgeenien ilmentymisen ja paikantumisen. Tulokset osoittivat, että mOX40L paikantui solun pinnalle. mCD40L havaittiin puolestaan sekä solun ulkopuolella että sytosolissa. Virtaussytometria kokeen tulokset osoittivat, että sekä AdE3 ja AdCMV pystyivät tehokkaasti ilmentämään mOX40L ihmisen solulinjoissa. AdE3 virtausytometria tuloksissa löydettiin kaksi solupopulaatiota, joilla oli toisistaan poikkeavat fluoresenssi intensiteetit. Tätä ilmiötä ei havaittu AdCMV:lla infektoiduilla soluilla, mikä saattoi johtua korkeammasta lyyttisestä aktiivisuudesta. Hiirisolulinjoissa CMV kykeni ilmentämään mOX40L, mutta transkription teho oli selvästi alhaisempi verrattuna ihmissolulinjoihin. E3 promoottorin ilmentämä mOX40L ei eronnut kontrollista ja sen todettiin olevan kykenemätön tuottamaan mOX40L hiirisolulinjoissa. Tuloksemme osoittavat, että ihmisen CMV promoottori kykenee ilmentämään transgeenejä hiiren 4T1 ja CT26 solulinjoissa. On kuitenkin huomattava, että isäntälajille natiivien virusten ja promoottorien käyttö olisi tarkoituksenmukaisempaa tulosten käännettävyyden kannalta hiiristä ihmisiin.
  • Suominen, Laura (2020)
    Background: Alzheimer’s disease (AD) is a worldwide challenge for health care professionals and researchers. Every year, AD causes dementia for millions of patients. No preventive or curative medication is available despite continuous research. Amyloid-beta (Aβ) deposits in brain are one of the main pathological findings in AD. Accumulating Aβ peptides are thought to be the reason behind further disease progression. If the Aβ accumulation could be restricted or Aβ degradation increased their toxic effects would be prevented. Soluble oligomers and protofibrils are the most toxic species of Aβ. Most of the Aβ targeting drugs developed so far have not specifically targeted these toxic species. Neprilysin (NEP) is a major Aβ degrading enzyme that targets mostly the smallest species (monomers and dimers) of Aβ. Another common challenge for protein drugs has been passing the blood-brain barrier (BBB). Different strategies, such as utilising transferrin receptor (TfR) mediated transcytosis, have been studied for drug transport. For example, a rat anti-mouse TfR antibody, 8D3, or its fragments can be used for drug transportation. Objectives: To produce a recombinant protein, sNEP-scFv8D3, combining soluble NEP and single chain variable fragment of 8D3. Testing its ability to degrade different species and isoforms of Aβ in vitro and study in vivo brain uptake. Evaluate whether it is a promising model for future AD treatments. Methods: The recombinant protein was expressed in Expi293 cells and purified with affinity chromatography. The TfR binding was studied with TfR ELISA and enzymatic activity with MCA assay. Aβ ELISA was used for determining the Aβ degradation. Recombinant protein was compared to sNEP. In in vivo studies the brain uptake and blood half-life of radiolabeled sNEP-scFv8D3 of were studied on NLGF mice. Immunohistochemical analyses of brain cryo sections were done to evaluate the co-localisation of Aβ aggregates and sNEP-scFv8D3. Results and discussion: sNEP-scFv8D3 bound to TfR and showed similar enzymatic activity as sNEP. Both sNEP-scFv8D3 and sNEP were able to degrade monomeric Aβ-40 and Aβ-42 but no significant effect was seen on larger aggregates. In mice brain, sNEP-scFv8D3 was detected in same areas as Aβ aggregates. Compared to sNEP, our recombinant protein had better brain uptake. The blood half-life of sNEP-scFv8D3 was approximately 9.5 h and it was cleared fast from the brain. Already 6 h post injection, levels in the brain had dropped more than by half. Further studies are needed to determine whether sNEP-scFv8D3 is effectively transported across the BBB and if it can reduce brain Aβ levels in vivo. Conclusions: In the future, sNEP-scFv8D3 or its improved version could be used at the earliest stages of AD to prevent disease progression. Since sNEP-scFv8D3 degrades only small Aβ aggregates it could be combined with another drug targeting larger oligomers. Together they would decrease the total Aβ deposition in brain.
  • Juntunen, Maiju (2020)
    Cancer immunotherapy refers to therapy strategies that utilise the mechanisms of the immune system to treat cancer patients. The benefits of the approach include the possibility for specific targeting and utilisation of the host immune system. The treatment methods include cancer vaccines, oncolytic viruses (OVs), cell-based immunotherapies and antibodies. The interplay between the cancer and the immune system has been observed crucial for the progress of the cancer and the success of immunotherapies. An immune inflamed tumour microenvironment has been observed beneficial for the success of several therapy methods. Many immunotherapy methods rely on detecting tumour specific antigens that are used to guide the therapy agent to the target site. This strategy poses challenges when considering tumour immune evasion mechanisms, which can cause downregulation of target antigens, and heterogeneity of tumour cells and patients. OVs have the advantage of not requiring predetermined target structures to exert their effect to the tumour cells. They cause direct tumour cell lysis and induce immune responses, and may be modified to express additional genes, including immunostimulatory agents. However, virus-related immunosuppressive mechanisms and a rapid viral clearance may limit their effects. A Western Reserve (WR) Vaccinia virus (VACV) is a highly oncolytic virus strain but the virus has been observed to suppress the function of the cyclic guanosine monophosphate adenosine monophosphate synthase – stimulator of interferon genes (cGAS STING) innate immune pathway which has been shown to have a significant role in anti-tumour immune responses. The aim of this study was to create a WR VACV encoding a dominantly active (D A) STING and to determine whether the virus is capable of activating the cGAS STING pathway. The effects were compared to a corresponding virus vvdd tdTomato that does not have the STING encoding gene. The pathogenicity of viruses was controlled by a double deletion of the thymidine kinase and vaccinia growth factor genes which restricts the virus replication to tumour cells. Transgene fragments were cloned from template plasmids by polymerase chain reactions (PCRs) and joined together in a Gibson Assembly (GA) reaction to form a STING-P2A-eGFP gene insert. The insert was attached to a shuttle vector pSC65-tdTomato by restriction enzyme digestion, ligation and transformation in Escherichia coli. The correct transgene plasmid construct was verified by Sanger sequencing and PCRs. The transgene was inserted to a modified WR VACV vvdd-tdTomato-hDAI by a homologous recombination. The newly created VVdd STING-P2A-eGFP virus was purified by plaque purification. The STING protein expression was studied by an immunocytochemistry (ICC) assay. The immune signalling pathway activation was examined by testing nuclear factor kappa-light chain-enhancer of activated B cells (NF-κB) activation in RAW-Blue cells and dendritic cell activation and maturation in JAWS II cells. The cell viability after iinfection was studied with four cell lines; A549, B16-F10, HEK293 and MB49. The D-A STING expressing virus was produced successfully. The ICC experiment verified the capability of the VVdd STING-P2A eGFP to produce the STING protein in the infected cells. The preliminary findings indicate that the VVdd STING-P2A-eGFP virus activates the NF-κB signalling in the RAW-Blue cells and that the activation is dependent on the STING expression. The activation level is relative to the infection concentration at MOI range 0,001 to 0,1. The findings suggest that the VVdd-STING-eGFP virus can induce innate immune signalling via the STING pathway. The reference virus did not activate the signalling. The in vitro experiments also indicated that the STING virus may induce DC activation and maturation. We observed a trend of CD86 and CD40 expression upregulation on the JAWS II DCs. The effects to the cell viability were inconclusive. More studies should be conducted to verify the results. The effects of the virus should be studied in more advanced cancer models that take into account the complexity of the immune system. These preliminary results indicate the that the VVdd-STING-P2A-eGFP virus could stimulate the immune signalling through the STING pathway.
  • Uoti, Arttu (2021)
    Background and objectives: Cancer is one of the leading causes of death worldwide, and resistance to current treatments demands the continuous development of novel cancer therapies. Cancer immunotherapy aims to induce anticancer immune responses that selectively target cancer cells. Viruses can also be harnessed to elicit tumor-specific immune responses and to improve the response rates of other concomitant cancer therapies. The purpose of this study was to develop a novel viral vector-based cancer vaccine for intratumoral immunotherapy. By using the previously developed PeptiENV cancer vaccine platform, the vector viruses were coated with cell-penetrating peptide (CPP) sequence-containing tumor peptides in an attempt to further drive the immune responses elicited by the vector against cancer cells. The efficacy of the PeptiENV complex as a cancer vaccine was assessed by following its effects on tumor growth and the development of local and systemic antitumor immune responses. Methods: The PeptiENV complex formation was assessed by a surface plasmon resonance (SPR) analysis. Dendritic cell (DC) activation and antigen cross-presentation were studied using the murine JAWS II dendritic cell line. The development of cellular immune responses against tumor antigens was first studied by immunizing mice with the PeptiENV complex. The antitumor efficacy and immunity of intratumoral PeptiENV administration were then studied using the murine melanoma models B16.OVA and B16.F10.9/K1. In addition to intratumoral PeptiENV treatment, some of the B16.F10.9/K1-implanted mice were also treated with an anti-PD-1 immune checkpoint inhibitor (ICI) to study the PeptiENV complex as a biological adjuvant for ICIs. Results: The SPR analysis confirmed that CPP-containing peptides can be stably anchored onto the viral envelope of the viral vector. The in vitro results showed that the PeptiENV complex does not hamper the presentation of antigens at the surface of DCs. Additionally, the viral vector was found to activate DCs seen as a change in the cells’ morphology and surface protein expression. Immunizing mice with the PeptiENV complex induced a robust antigen-specific cytotoxic T cell response. Upon intratumoral administration in vivo, the PeptiENV cancer vaccine was not capable of inducing tumor growth control against B16.OVA melanoma, although it did still elicit robust systemic and local antitumor T cell responses. In the treatment of B16.F10.9/K1 melanoma, however, the PeptiENV complex induced efficient tumor growth control, which resulted in a significant survival benefit. Additionally, co-administration of anti-PD-1 resulted in an additive therapeutic effect. Discussion and conclusions: The present study describes a novel, highly immunogenic viral vector-based cancer vaccine that has the potential to be used as an adjuvant treatment for ICI therapy. Subsequent studies could be conducted to gain a deeper understanding of the immunological mechanisms underlying the antitumor efficacy of the cancer vaccine complex. Moreover, this novel PeptiENV complex could also be further developed as an infectious disease vaccine platform against emerging pandemics. However, the effects of pre-existing antiviral immunity on the efficacy of the cancer vaccine should be explored in future studies.
  • Niemelä, Akseli (2022)
    Lecithin:cholesterol acyltransferase (LCAT), a key enzyme in maturating high-density lipoprotein (HDL) particles, has been targeted to promote the efficiency of reverse cholesterol transport by small molecular positive allosteric modulators (PAM) of Daiichi Sankyo. For a set of these compounds their Vmax and EC50 values and binding site in the membrane-binding domain (MBD) of LCAT have been determined. Through molecular dynamics (MD) simulations we previously found a metric that qualitatively described which compounds were active, so in this study we aimed to improve it by finding a quantitative metric. This led to the discovery of the Cα distance between CYS50 and ASN65, which correlates with this set’s Vmax values and which can be utilized to predict the Vmax values of novel compounds. Additional simulations were performed to discover whether this metric is changed by a lipid interface present, and to reveal a likely entry pathway PAMs take. As LCAT activation is likely a benign and potentially overlooked effect, we performed a virtual screen of FDA-approved compounds and secondary metabolites associated with LCAT. From secondary metabolites, a key finding was that flavonoids were overwhelmingly associated with LCAT and had a high binding potential to the MBD in docking simulations. The best binding compounds were subjected to MD simulations to discover their Vmax values using the discovered metric. This provided us with a set of compounds, which can be used to validate our in silico model in vitro. Should this model be validated, it can be used in optimising and discovering novel PAMs of LCAT, and it would bring evidence to the benefit of MD in drug discovery processes in general. Furthermore, if our discovered compounds can activate LCAT in vitro, they may be used as precursors for novel PAMs or as therapies by themselves not only for LCAT deficiencies, but perhaps for atherosclerotic cardiovascular diseases as well.
  • Natri, Ossi (2022)
    Coronary heart disease is a number one killer in westernized countries and the costs from it will continue to grow in the future. It is caused by atherosclerosis, build-up of plaque and chronic inflammation in the arteries of heart, and endogenous lipoproteins have a special role in its development. Among other atheroprotective properties, High density lipoproteins (HDL) have a role in intrinsic mechanism of the reverse cholesterol transport (RCT), of gathering and removing excess cholesterol from peripheral tissues. There have been several HDL raising strategies in the past for the treatment of atherosclerosis, but their success has been modest. Synthetic HDL (sHDL), comprising of various types of phospholipids and proteins or peptides, have been developed to mimic the properties of endogenous HDL. Despite some success in animal studies, failures in clinical studies have turned the focus on the HDL’s interaction with a specific enzyme lecithin:cholesterol acyl transferase (LCAT), responsible for cholesterol esterification, a key step in RCT. ApoA-I, the most abundant protein component of HDL, acts as LCAT cofactor in cholesterol esterification, and many LCAT activating peptides have been developed to mimic the features of apoA-I. The molecular level understanding behind LCAT activation is however still foggy. During enzymatic activation, LCAT goes through conformational changes specific regions, which are generated by interactions with apoA-I or synthetic peptides. These mechanisms have been studied widely with molecular dynamic simulations, in vitro experiments, and imaging. In this study, we investigated 22A (PVLDLFRELLNELLEALKQKLK), apoA-I mimetic peptide known for its as good LCAT activation potency as apoA-I, and four variations of it (21A, 22A-P, 22A-K22Q, and 22A-R7Q), and combined them with phospholipid DPPC to create sHDL nanodiscs by thermal cycling method. We examined the effect of small changes in peptide sequence on LCAT-sHDL binding strength with quartz crystal microbalance with dissipation (QCM-D). The interest was to further test the suitability of thermal cycling method on nanodisc assembly, test the binding strengths against the hypothesis of the role of salt-bridge forming amino acids R7 and K22 in peptide dimerization and its effect on LCAT binding and activation, and to see if QCM could act as a suitable method for the research of sHDL-LCAT interactions. All peptides formed similar sized sHDL particles with diameter of ~10 nm with thermal cycling method. As expected, the LCAT binding tendency of 22A-sHDL was highest, about double compared to four other peptide nanodiscs with almost identical results. The QCM results suggest that binding tendency between LCAT and sHDL is affected by small, one amino acid change in peptide sequence, but it does not necessarily have a big impact on LCAT’s esterification activity, but based on this experiment alone, we cannot make any further conclusions. Electron microscopy revealed exceptional breakdown of 21A-sHDL incubated with LCAT compared to 22A-sHDL. This phenomenon could indicate high lipolytic rate of LCAT but needs further investigation. There were some challenges with the measurement parameters in the beginning, and the variability between parallel measurements with QCM-D was high, which cause a little doubt about the method’s suitability for these kinds of precise measurements. More research for revealing the molecular mechanism behind LCAT activation is needed for the development of more effective treatments.
  • Heinonen, Suvi (2020)
    Diacylglycerol (DAG) is a lipid second messenger, which activates classical and novel protein kinase C (PKC) isozymes at the plasma membrane. Abnormalities in PKC signaling have been linked to several diseases, and defective PKC function connects to multiple pathophysiological components of Alzheimer’s disease. However, aimlessly activating all PKC isozymes with synthetic ligands can be problematic, since the activation of certain isozymes can also promote unwanted processes. There are indications that DAGs with varying degrees of acyl chain saturation may have different and specific PKC activating abilities. Thus, understanding how the structural differences in DAGs relate to their behavior at the lipid bilayer may be beneficial for the development of new, isozyme-specific ligands of PKC. The aim of this master’s thesis was to compare the orientation, positioning and dynamics of two unsaturated DAG molecular species, 1,2-dioleoyl-sn-glycerol (DOG) and 1-stearoyl-2-docosahexaenoyl-sn-glycerol (SDG) in glycerophospholipid bilayers using conventional molecular dynamics (MD) simulations and umbrella sampling. The glycerophospholipid bilayers were composed of either 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine (POPE) or 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphatidylethanolamine (SDPE), representing the glycerophospholipid environment in the inner leaflet of the plasma membranes in peripheral tissues and in brain tissue, respectively. Both DAG molecular species displayed very dynamic behavior in all systems, with wide distributions of glycerol moiety tilt angles and acyl chain conformations. Multiple occurrences of transbilayer movement (flip-flop) of DAGs was observed during the MD simulations in all systems. In POPE bilayers, SDG was observed to position closer to the aqueous interface compared to DOG, with larger values of solvent accessible surface area (SASA) of the glycerol moiety and the sn-3 hydroxyl group. In SDPE bilayers, no significant difference in this regard was observed between the DAG molecular species. Although potential of mean force (PMF) profiles did not reveal any major differences in the energetically favoured position of the hydroxyl group between the DAG molecular species, the calculations exposed that the dynamics of DOG are affected more by the surrounding lipid environment compared to SDG. Based on these results, it is probable that while the solvent accessibility and overall position of DAGs is affected by the length and degree of saturation of their acyl chains, there are also other mechanisms and processes causing the differing levels of PKC activation yielded by different DAG molecular species.
  • Tikkanen, Alli (2019)
    Organic Anion Transporting Polypeptide 2B1 (OATP2B1) is an influx transporter expressed widely throughout the body in tissues such as intestine, liver, brain, placenta and skeletal muscle. Since many clinically used drugs are transported by OATP2B1, changes in the function of the transporter due to genetic polymorphism could lead to altered pharmacokinetics or -dynamics of OATP2B1 substrate drugs. The aim of this Master’s thesis was to create and optimize a cellular uptake assay to study the function of OATP2B1. Furthermore, the aim was to study the effects of six naturally occurring nonsynonymous single nucleotide variants on OATP2B1 transport function in vitro. With site-directed mutagenesis, single nucleotide changes were introduced into the gene coding for OATP2B1. OATP2B1 variants were expressed in human derived HEK293 cell line using baculovirus expression system. A cellular uptake assay with estrone-3-sulfate and a fluorescent probe 4’, 5’-dibromofluorescein (DBF) as substrates was set up and optimized. With the assay, OATP2B1-mediated uptake of variants was compared to the transport activity of OATP2B1 wild type. Amino acid changes Ser486Phe and Cys520Ser impaired OATP2B1 transport function severely. In addition, variant Thr318Ile transported DBF and estrone-3-sulfate less efficiently compared to OATP2B1 wild type, but Arg312Gln, Thr392Ile and Ser532Arg transport function was not affected. A method to study OATP2B1 function was created successfully. According to the results, single amino acid changes in OATP2B1 can impair OATP2B1 function. The results and method can be utilized to understand findings from pharmacogenetic studies in vivo, and to predict consequences of especially rare variants, which can be difficult to detect in small sample populations in clinical studies. However, further studies on the expression level and cellular localization of OATP2B1 variants are needed to fully characterize the impact of the variants studied.
  • Vieraankivi, Marika (2021)
    The ABCG2-protein is an ATP-dependent half transporter. It is found on apical membranes in intestine, liver, kidney, blood-brain barrier and placenta where it regulates absorption, distribution and elimination of many drugs, but also natural compounds and endogenous metabolites. Natural variation found on the ABCG2-gene can alter protein expression and transport activity. The altered function has been linked to pharmacokinetic changes and developing of diseases like gout. Studying natural ABCG2-variants and their effect gathers knowledge not only on their effect on pharmacokinetics but also on the ABCG2- transporters’ mechanism of function. The aim of this study was to combine an activating (I456V or H457R) and an inactivating (Q141K, F431L or T542A) non-synonymous single nucleotide variant in the same gene to study their combined effect on the ABCG2-transporter expression and active transport. Mutations were incorporated into the ABCG2- gene by site directed mutagenesis and the protein was expressed on HEK293-cells. The transport activity for Lucifer-Yellow and estrone sulfate was measured using HEK293-ABCG2-vesicles produced from cell membranes. The protein expression was measured with Western blot and mass spectrometry proteomics. Based on this study, different mutations together can alter each other’s effects, but the combined result is not always equal to the sum of variations. T542A-mutation did not show significant increase on the protein expression on any of the T542A-combinations, even though it has had such an effect in earlier studies. I456V, earlier expressed like wild type ABCG2, seemed to increase protein expression in all combinations. Q141K, F431L and T542A -mutations had lowering not expression dependent effect on the transport activity. F431L-mutation being so dominant that either of the two activating mutations could not restore the active transport in combinations. As seen before, H457R-variant seemed to cause a significant substrate specific activating effect on transport activity also in this study when combined with other mutations. However, H457R had a strong lowering effect on the protein expression and two of the combinations did not produce enough protein for active transport. As seen in this study, the ABCG2-doublemutations can cause altered ABCG2-function and lead to pharmacokinetic changes. These types of in vitro studies are important in studying these less common genetic variants which in lack of study subjects can be hard to study on clinical trials.
  • Karumo, Suvi (2022)
    Liposomes are biocompatible spherical nanosized vesicles consisting of hydrophobic phospholipid bilayer encasing an aqueous core. They can be utilized as drug carriers by either encapsulating molecules inside the core or embedding them in the bilayer accordingly to achieve numerous advantages such as prevention of rapid clearance and reduction of adverse effects as systemic exposure is reduced. Despite the marked efforts in designing the liposomes to improve therapeutic outcomes, only limited drug concentrations are achieved at the target sites such as in solid tumors. Stimuli-responsive liposomes could be applied as potential delivery systems to achieve spatiotemporally controlled drug delivery, i.e., the drug release could be pinpointed and restrained to the target site. In this thesis, the objective was to study the light-activated indocyanine green (ICG) liposomes as nanocarriers for peptide-based anti-tumor agents. The physicochemical characteristics, stability and functionality of the prepared liposomes were determined alongside optimizing the formulation as needed and utilizing different model peptides as encapsulated compounds. Additionally, the peptide stability during near-infrared (NIR) light illumination and the effects of the anti-angiogenic model peptides in vitro were investigated. The stability of the liposomes was assessed by monitoring the size of the liposomes, intactness of ICG, and passive leakage of the peptides over time, and by determining the phase transition temperatures of the different formulations. The liposomes remained adequately stable in different relevant conditions, and the observed phase transition temperatures did not indicate the lipid bilayer becoming permeable in physiological temperatures. However, the rate of passive leakage was rather high in all formulations, although with stiffer lipid bilayer in the “rigid” formulation, the unintended release was able to be decreased slightly in comparison to the other formulations. On the other hand, light-triggered release upon illuminating the liposomes remained considerably low in all formulations. The intactness of peptides seemed to not be impacted by the illumination. Also, no cytotoxic effects were observed after exposing human umbilical vein endothelial cells (HUVEC) to the peptides. The final “rigid” formulation showed the best functionality out of those included in the studies. It remains to be investigated whether the formulation could be improved further for optimal functionality and stability, and to what degree do the properties of the cargo molecule affect the performance of the liposomes.
  • Mäki-Mikola, Eija (2020)
    Liposomes are nano-sized vesicles, that are composed of a phospholipid bilayer structure. They can be utilized as drug carriers, in which case the drug is incorporated either to their hydrophilic internal cavity, or into their hydrophobic bilayer structure. For anticancer drugs, liposomal formulations have exhibited their capability in reducing adverse effects of anticancer drugs. This is achieved mainly by the enhanced permeability and retention (EPR) effect, in which liposomes accumulate into tumour tissue. However, the conventional liposomes release their drug content passively, and a proportion of drug is distributed to off-target tissues. Therefore, there is a demand to develop liposomes from which the content can be released in a controlled manner, by an external stimulus. The objectives of this master’s thesis project were to determine the potential of light-activated paclitaxel (PTX) liposomes for the treatment of lung cancer, and to optimize a dynamic cell culture system, QuasiVivo® (QV), to study the off-target effects of light-activated PTX liposomes. The hypothesis was that the induction of the light-activated PTX liposomes would increase the efficiency of paclitaxel treatment. For QV experiments, it was expected that the presence of flow would improve the viability of the cells. The encapsulation efficiency of PTX into the liposomes and the effect of the PTX incorporation into the phase transition temperature of the liposomes were determined. The stability of liposomes was determined by monitoring the liposomal size and light sensitizer absorbance during a storage period. The cells of lung cancer cell line A549 were cultured inside QV system, and their viability was monitored with two commercial cell viability assays. Incorporation of PTX decreased the phase transition temperature, but the liposomes remained stable in the studied conditions. The PTX liposome treatments with and without light activation resulted in the similar efficacy as free PTX treatment did. A549 cells failed to display superior viability inside the QV compared to static conditions. Cells cultured under lower flow rate portrayed modestly higher viability. The light-activated PTX liposomes did not improve the efficacy of PTX treatment. Neither of the flow rates were optimal for A549 cells, as the variation between experiments was high. The EPR effect is the main reason for the improved effects of liposomal anticancer drugs, therefore, it is likely that in vivo experiments would elicit the differences between the efficacy of the liposomal and free PTX. The non-existent effects of light activation on the viability are likely caused by the low total concentration of the light sensitizer in the treatment solution.
  • Parviainen, Heli (2020)
    Statins are a commonly used group of drugs that reduce the cholesterol levels in blood and have been shown to reduce cardiovascular morbidity and mortality. However, a considerable percentage of patients experience adverse effects during statin treatment. Statin adverse effects have been associated with genetic polymorphisms and drug-drug interactions that affect the elimination and active transport of these drugs. A more comprehensive knowledge of statin metabolism may be a step towards better management of statin treatments. Statin metabolism both in vivo and in vitro has been subject of study for years. In vitro incubation conditions may considerably affect the observed clearance, and results obtained with different methods or in different laboratories may not be directly comparable to each other. No single in vitro study on a wide panel of statins has previously been conducted. Six statins and some of their metabolites, fourteen compounds in total, were included in the study. The intrinsic clearance (CLint) of these molecules was investigated in vitro on human liver microsomes (HLM) and a panel of eleven cytochrome P450 (CYP) enzymes recombinantly expressed in E. coli. Observed CLint values for each compound in HLM and for each compound-CYP pair with observed depletion were calculated. The percentual contributions of each CYP enzyme to the metabolism of the compounds was calculated. The results obtained with recombinant CYP enzymes (rcCYP) were complemented with studies on HLM with specific chemical inhibitors of CYP enzymes. In this study the metabolism of statin lactones seemed to be faster than the metabolism of the corresponding statin acids. Atorvastatin lactone, 2-hydroxy atorvastatin lactone, 4-hydroxy atorvastatin lactone and simvastatin were extensively metabolized. Atorvastatin, 2-hydroxy atorvastatin, 3R,5S-fluvastatin, 3S,5R-fluvastatin, pitavastatin lactone and simvastatin acid showed intermediate metabolism. 4-hydroxy atorvastatin, pitavastatin, pravastatin and rosuvastatin rates of metabolism were below quantification limit. CYP3A4 had a major role in the metabolism of atorvastatin and its metabolites, simvastatin and simvastatin acid. CYP3A4 also had activity towards pitavastatin lactone. CYP2C9 had a high activity towards both 3R,5S-fluvastatin and 3S,5R-fluvastatin. CYP2D6 may play a part in the metabolism of pitavastatin lactone. CYP2C8 may have some activity towards simvastatin and simvastatin acid. The data is mostly in agreement with previous in vitro and in vivo studies regarding both the metabolism rate of statins and the contributions by different CYP enzymes to the metabolism of statins. Due to the screening nature of the study and some methodological constraints, these data should be considered as preliminary and require confirmation in further studies.
  • Suotunen, Pauliina (2020)
    The OATP1B3 belongs to the organic anion transporting polypeptides (OATPs) encoded by the SLCO (solute carrier organic anion) genes which belongs to the SLC (solute carriers) gene superfamily. It is an influx transporter which is primarily expressed on the basolateral membrane of the hepatocytes. It transports many endogenous substrates as well as clinically important drugs such as thyroid hormones and statins into hepatocytes and thus participates in the first step of hepatic metabolism. Single nucleotide polymorphisms (SNPs) of the SLCO1B3 gene can affect the pharmacokinetics and pharmacodynamics of its substrates. The aim of this study was to set up and optimize an in vitro method to study the function and expression of the OATP1B3 transporter and its genetic variants. SNPs 334T> G (Ser112Ala), 699G> A (Met233Ile) and 767G> C (Gly256Ala) and stop codon TAA were introduced into the SLCO1B3 gene by site-directed mutagenesis. Recombinant baculovirus vectors containing the genetic information of OATP1B3 and its variants were used to transiently transfect the HEK293 cells. After optimizing the substrate incubation time and concentration, as well as the viral load and selecting the fluorescent substrate (8-FcA), the uptake assay was used to determine the transport activity of the OATP1B3 variants in HEK293 cells. The transport activity of the artificial WTP variant was also investigated in this study. The transport activities of the Ser112Ala, Met233Ile and Gly256Ala variants did not change significantly from the wild type although the transport activity of the Met233Ile variant appears to be slightly impaired. In turn the WTP variant was unable to transport 8-FcA. Based on this study the function of OATP1B3 variants can be studied using recombinant baculovirus to transiently transfect the HEK293 cells. 8-FcA can be used as a probe substrate in these studies. The results of this study confirm previous knowledge of the functioning of Ser112Ala, Met233Ile and Gly256Ala variants. More studies are needed about the effects of these variants on the transport of OATP1B3 drug substrates. Also studies about the location, cell membrane and total cell expression of the WTP variant are needed to evaluate reliably the reasons of its inactivity.
  • Laustio, Netta (2018)
    During the past few decades, the explosion of discovery in cancer and immunological research has led to the increased understanding of the interactions between the immune system and tumors. These developments have provided vital information about the immune system’s role in cancer development. It is evidenced that the immunity system is capable to distinguish tumor cells from normal tissue by recognizing tumor antigens that are exclusively expressed on tumor cells or are presented in greater amounts on tumor cells than normal cells. Consequently, the immune cells start to attack tumors for protecting the host. The possibility to use the immune system as a weapon against cancer cells leaded to the promising innovation – cancer immunotherapy – which aims to activate the body’s own immune system and its components to mount antitumor immune responses for eliminating cancer cells. The antitumor efficacy and high safety profile of several immunotherapeutic strategies have already been demonstrated thereby resulting in their integration into clinical practice. However, most patients have not benefited from cancer immunotherapy as a single treatment. In this regard, new innovative methods are clearly needed to overcome the obstacles hindering the clinical success of this field. Therapeutic cancer vaccines are emerging as attractive immunotherapies currently being evaluated in both pre-clinical and clinical studies. The purpose of cancer vaccines is to eradicate tumor cells by eliciting antitumor CD8+ T cell responses against the injected tumor antigens. Due to the ability to specifically kill tumor cells and simultaneously trigger immune responses against tumor antigens via direct oncolysis and by encoding transferred tumor antigens, oncolytic viruses are of significant interest for being used as in situ cancer vaccines. Despite these unique properties, several factors such as tumor immunosuppression and immune tolerance to targeted tumor antigens resembling antigens of normal tissues hamper the use of oncolytic vaccines in clinic. Instead of focusing only on CD8+ T cells, it has been suggested that giving more attention to CD4+ T helper cells, which are required for priming and expansion of CD8+ T cell responses, could be the key to improve the efficacy of cancer vaccines. Researchers have also demonstrated that an ongoing antigen-specific CD4+ T cell response can lead to the bystander activation of surrounding T cells with unrelated antigen specificities. Based on this theory, the hypothesis of this study was to employ the pre-existing immunological CD4+ memory against infectious pathogens in generating bystander CD8+ immunity against solid tumors. In this study, mice transplanted with poorly immunogenic B16-OVA tumors were pre-immunized with the chosen vaccine to induce immunological CD4+ memory against an infectious pathogen. Tumors were then treated with already developed cancer vaccine, which was peptide-coated conditionally replicating adenovirus (PeptiCRAd) complex. PeptiCRAd was constructed by electrostatically coating adenovirus with both pathogen-derived and tumor-derived peptide. The intratumorally injected double-coated PeptiCRAd complex was assumed to activate peptide-specific T cells and thus, result in anti-pathogen CD4+ T cell recall responses and the following bystander activation of antitumor CD8+ T cells, which can then mount an effective immune response to destroy cancer cells. The efficacy of this treatment was observed in pre-immunized mice by measuring the growth of injected tumors. The experiment was repeated identically with non-immunized naïve mice to see the difference in the results. The immunological background of this treatment approach was investigated by analyzing mouse tissue samples with standard immunological techniques including ELISA, IFN-γ ELISPOT and flow cytometry. This study showed that long-term immunological memory against the pathogen was successfully accomplished and the strongest inhibition of tumor growth in pre-immunized mice was achieved with double-coated PeptiCRAd, whereas the antitumor efficacy was not seen in naïve mice. Additionally, a new ex vivo method to detect pathogen-specific CD4+ T cells from spleen was developed and the stimulation of cell-mediated immunity by this treatment was supported by finding the highest levels of pathogen-specific CD4+ Th1 cells from mice treated with double-coated PeptiCRAd. Some encouraging results concerning the beneficial immune cell composition of tumors and tumor draining lymph nodes were also obtained from other performed experiments. Though further immunological analyses are required for understanding the precise mechanisms of action behind the treatment, the increased immunogenicity and antitumor efficacy of double-coated PeptiCRAd can still be considered as a consequence of the bystander effect, which can possibly be utilized for developing improved strategies to win the fight against cancer.
  • Koivunotko, Elle; Merivaara, Arto; Valkonen, Sami; Chinello, Lisa; Salmaso, Stefano; Korhonen, Ossi (2020)
    Biomimetic native nanofibrillated cellulose (NFC) hydrogel has recently proven its efficacy, safety and diversity at the site of pharmaceutical industry. Yet, properties for the long-term storage in dry condition at room temperature and feasible transportation needs to be developed for NFC hydrogel before it is suitable for freeze-dried biomedical applications. Our aim was to optimize freeze-drying cycle for NFC hydrogel formulation with suitable lyoprotective biomolecules and preserve its properties after freeze-drying process and reconstitution. NFC hydrogel formulations with different combinations of chosen biomolecules were freeze-dried, and physicochemical properties and rheological features were characterized. In addition, morphology of the freeze-dried cakes was studied. The effects of the biomolecules on the water contents in NFC systems were simulated for both of the crystal and amorphous ones. All the results of the characteristics were compared with the non-freeze-dried NFC hydrogel formulations. NFC hydrogel formulation, which had the most optimal preservation properties after freeze-drying and reconstitution, was optimized. We hypothesized that without any chemical modifications native NFC hydrogel can be successfully freeze-dried and subsequently reconstituted with the proper biomolecules only by using biological and natural materials, which are human and xenon-free for the further use in biomedical applications of the native NFC hydrogel.
  • Hurmalainen, Virpi (2021)
    P-glycoprotein is an efflux transporter of the ABC family. It is expressed mainly in tissues that have a role in limiting the absorption and distribution of xenobiotics in the body or their elimination. P-glycoprotein is known to have an important role for example in the blood-brain barrier and in protecting the fetus from xenobiotics in the mother’s blood stream. Genetic polymorphisms in transporter proteins can cause individual differences in the pharmacokinetics of drug substances, which can lead to differences in drug efficacy or side effects. In the ABCB1 gene, which codes for p-glycoprotein, several polymorphisms have been discovered. The frequencies of these polymorphisms vary in different ethnic populations. Previous studies have shown that the effects of these polymorphisms are often substrate-dependent. Since there are several confounding factors usually present in clinical association studies, in vitro studies are needed to clarify the effects of individual polymorphisms. Polymorphisms can be studied in vitro by making intentional mutations to the gene sequence and expressing the variant gene in a suitable cell line. In this study four variant p-glycoprotein genes (c.781A>G, c.1199G>T, c.2005C>T and c.3421T>A) were created by site-directed mutagenesis, and expressed in HEK293 cells using a baculovirus recombinant protein expression method. The effects of the polymorphisms were studied by determining the expression level and the transport acitivity of the variant proteins compared to the wild-type. Western blot was used to determine the expression level and a calcein accumulation assay in HEK293 cells was used to compare the transport activities. Also a membrane vesicle transport assay with n-methyl quinidine was set up and optimized, but the variants were not yet studied with this method during this study. In this study no statistically significant differences were found in the transport activities of any of the four variants compared to the wild-type p-glycoprotein. Also the differences in protein expression level between wild-type and variant proteins were small. However, because of the previously reported substrate dependency of polymorphism effects, it would be beneficial to study the variants with at least one other substrate and one other assay method, and thus the membrane vesicle transport assay would be useful to further compare the transport activities of variant proteins to the wild-type p-glycoprotein.
  • Vidjeskog, Katarina (2021)
    Solunulkoiset vesikkelit eli EV:t ovat nanokokoisia solujen tuottamia lipidikaksoiskalvon peittämiä kalvorakkuloita. Solut vapauttavat EV:itä solunulkoiseen tilaan ja niitä on kaikissa kehon nesteissä. Aiemmin niiden uskottiin olevan vain solujen tapa päästä eroon tarpeettomasta materiaalista, mutta nykyisin tiedetään, että EV:illä on tärkeä merkitys solujenvälisessä viestinnässä. Sitä mukaa kun ymmärrys EV:iden merkityksestä on kasvanut, on kasvanut myös kiinnostus niiden tutkimiseen. EV:itä voidaan eristää lähes kaikista kehon nesteistä, mutta veressä niitä on erityisen runsaasti. Plasman EV:t ovat pääosin peräisin punasoluista ja verihiutaleista. Kun nanopartikkelit ovat kosketuksissa veren kaltaisten biologisten nesteiden kanssa, niiden ympärille muodostuu proteiinirakenne, jota kutsutaan proteiinikoronaksi. Proteiinikoronan koostumus vaikuttaa nanopartikkeleiden pintaominaisuuksiin. Se voi vaikuttaa myös esimerkiksi niiden soluinteraktioihin ja signalointiominaisuuksiin. Tämän pro gradutyön tarkoituksena oli tutkia punasolujen ja niistä tuotettujen nanoerytrosomien EV tyypin proteiinikoronan määrää ja vertailla näitä määriä toisiinsa. Mittaukset suoritettiin ihmisen veri plasmasta, joka oli pitoisuudeltaan 100 %:sta, 50 %:sta sekä 25 %:sta. Verestä peräisin olevien EV:iden etu sekä mahdollisina lääkekuljettimina, että tutkimuskäytössä on se, että ne ovat myrkyttömiä, heikosti immunogeenisiä, helposti saatavissa olevia, helppokäyttöisiä sekä varastoitavia. Tutkimustulosten perusteella proteiinikoronan määrä on EryEV:illä ja NanoEry:illä samaa suuruusluokkaa. Havaittavaa eroa ei ainakaan näin pienellä otoskoolla ollut havaittavissa.
  • Erkkilä, Outi (2023)
    Physiologically based pharmacokinetic modelling (PBPK) can be used to predict pharmacokinetic behaviour of new drug molecules in human. PBPK model represents the body anatomically and physiologically with compartments connected to each other and combines those to drug specific parameters. PBPK modelling can be used to predict the absorption, disposition, and time-concentration profiles of drug molecules. The purpose of the study was to build a PBPK model for new drug molecule under research (compound A) and predict pharmacokinetics in human, to support the selection of dosing interval, formulation, and sampling time points for the first clinical trial. In this work it is described the building of the model in the ”bottom-up”-approach using in vitro parameters in GastroPlusTM-software. The modelling was done also for preclinical species (mouse, rat, dog) comparing the simulations to the observed in vivo data, which gave the confidence to the methods used in the modelling also for human. The model was first built for systemic kinetics and thereafter it was used for predicting pharmacokinetics after oral dosing. Parameters of systemic kinetics were compared also to the predictions from allometric scaling. Based on the preclinical species the most predictive method for the volume of distribution of compound A was the method by Lukacova, which predicted the volume of distribution to be moderate in human (1.7 l/kg). From the in vitro-to-in vivo -extrapolation methods the most predictive method to predict the clearance was the method by Poulin, which predicted low clearance in human (8.1-14.3 l/h). Empirical scaling factors based on the preclinical data were not needed, as the models predicted well the observed in vivo data. Allometric methods predicted the systemic kinetic parameters to be in the similar range. Advanced compartmental absorption transit -model (ACAT) integrated to GastroPlusTM-software predicted the absorption after oral dosing well in the preclinical species (predicted/observed ratio 0.8-1.3 for systemic exposure) despite the low solubility of the compound A. The model predicted the absorption in human to be sensitive to particle size and absorption rate to be clearly affected by the particle size. The feeding status was also predicted to affect on the absorption with larger particle sizes. The gut metabolism was not predicted to limit the oral exposure notably, whereas moderate bioavailability was predicted to be achievable. Compound A could be given in a capsule if the target particle size distribution could be achieved. The built PBPK-model can be used in the future to predict the first clinical doses by comparing the predicted plasma concentrations to in vitro pharmacodynamic parameters and to the plasma concentrations needed for efficacy in the pharmacodynamic models. The model can also be used to predict the drug-drug interactions.
  • Haapalainen, Joonatan (2022)
    Traditional 2D cell cultivating vessels and experimental models cannot often simulate natural chemical and physical environment of different cell types. For example, availability of oxygen, chemical gradients, messaging molecules, fluid pressure, flow and surface topography are factors that may affect significantly in cell differentiation, growth, cellular structure, and metabolism. Modular bioreactors like Quasi-Vivo® -system can be used to simulate these factors. Liposomes are particles of phospholipid bilayer with aqueous space enclosed within. They can be modified in numerous ways, like loading them with hydrophobic and hydrophilic molecules, changing their transition temperature or coating them according to different needs. Doxorubicin is effective and widely used cytostatic agent, but when administered as a free drug it has often severe side-effects, like cardiotoxicity. Goal of this thesis is to determine appropriate manufacturing parameters and verify adequate shelf-life of ICG-Doxorubicin liposomes, that they are applicable for future in vitro experiments. Then survival of HepG2 cell line under flow in Quasi-Vivo®-equipment is determined, after which A549 and HepG2 will be then combined into one two-cell model. Finally, a simple illumination experiment in this cell model with previously made liposomes is conducted, and the effect in whole system is examined. Using protocol presented in this thesis it is possible to produce successfully and repeatedly liposomes with both ICG and doxorubicin encapsulation over 70%. Their shelf-life was at least 14 days when stored in 4°C protected from light. This was determined to be sufficient for in vitro testing. Cultivating A549 and HepG2 cell lines combined in the same system with shared media and fluid flow conditions was successful. Neither of the cell lines show significant difference in viability when compared to static control. When light-activating liposomes are administered to the system and then illuminated, from preliminary results we can see significant difference in drug effect. Both illuminated chambers and off-target chambers connected via Quasi-Vivo® show increased suppression, which shows promise that this in vitro model would be useful for future experiments.