Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Subject "excipients"

Sort by: Order: Results:

  • Itämö, Satu (2018)
    Marketing authorized pharmaceutical preparations that are aimed at adult use cause problems both in administration and when dosing. Over and underdosing are the most common medication errors in pediatric population. Only a fraction of medicinal products are clinically tested and evaluated for pediatric use. Children should have the right for the best achievable health, medical care and rehabilitation. The aim of this study was to determine problematic pharmaceutical preparations, formulations or excipients experienced by healthcare professionals. The another aim of this study was to comprise (?) the view of healthcare professionals about 3D-printed medicinal products by using the collected data. By using the data, the problems, challenges, targets for development and other suggestions regarding pediatric medication were identified. New 3D printed medicines suitable for children can be developed by using the observations of this study. The study was carried out as semi-structured interview. Frameworks of the themes were structured by using the subjects of a recently made semi-structured questionnaire. The semi-structured interview was carried out as a group-interview, where the participants were presented open questions according to the themes structured before. According to the study results, the prejudices of the interviewees towards the new technology were mainly positive. The adjustability of the printed medicine by the means of the patient was most highlighted property in the interviews. Accoring to the experiences of the interviewees’, the most suitable pharmaceutical preparations used are liquid preparations such as oral liquids or suspensions. When using solid oral formulations, the age of the patient was not seen as significant. The most common reason for compounding the preparation was the wrong size of the product or dose. The varying availability of pharmaceutical preparations was seen as delaying factor at the start of the medical treatment. In the interview the pharmacists recognized the most common excipients causing adverse events. The different roles of the occupational groups were identified according to their work duties.
  • Itkonen, Jaakko (2014)
    Proteins are endogenous molecules that carry out most biological functions in vivo. They are called as the biological workhorses. Proteins are made up of polypeptide chains that usually fold in the three dimensional space to adopt a native stable conformation. Stability of proteins is dependent on the interplay of environmental factors (pH, temperature, ionic strength). For most proteins, the biological function closely relates to the structural attributes of the protein. Misfolding or unfolding of proteins often result in aggregation. Protein aggregation in vivo is known to cause debilitating and fatal diseases such as Alzheimer's, Huntington's, Parkinson's and age related macular degeneration (AMD). Instability (physical and chemical) of proteins in vitro is believed to result in aggregation. This is a huge concern for the biopharmaceutical industry as it not only limits the effectiveness of the manufacturing process but also poses a great risk of fatality in vivo due to the immunogenic nature of the aggregates. Mechanisms of protein aggregation are complex and not well understood. Regulatory requirements for patient safety in biopharmaceutical products require characterization and analysis of aggregates in protein drug formulations. This review provides an overview of protein aggregation in general and highlights the different analytical methods used to characterize protein aggregates in biopharmaceuticals. Neurotrophic factors influence survival, differentiation, proliferation and death of neuronal cells within the central nervous system. Human ciliary neurotrophic factor (hCNTF) has neuroprotective properties and is also known to influence energy balance. Consequently, hCNTF has potential therapeutic applications in neurodegenerative, obesity and diabetes related disorders. Clinical and biological applications of CNTF necessitate a recombinant expression system to produce large amounts of functional protein. Previous studies have reported that recombinant expression of CNTF in Escherichia coli (E. coli) was limited by low yields and the need to refold the protein from inclusion bodies. In this report, we describe a strategy to effectively screen fusion constructs and expression conditions for soluble hCNTF production in E. coli. Most conditions tested with the codon optimized hCNTF sequence in fusion with soluble tags resulted in soluble expression of the protein. The construct 6-His-CNTF showed soluble expression in all the conditions tested. Our results suggest that codon optimization of the hCNTF sequence is sufficient for soluble expression in E. coli. The recombinant hCNTF was found to bind to CNTFRα with an EC50 = 36 nM.