Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by master's degree program "Matematiikan, fysiikan ja kemian opettajan maisteriohjelma"

Sort by: Order: Results:

  • Hentunen, Johannes (2021)
    Lukuteoria tutkii kokonaislukujen ominaisuuksia, kuten jaollisuutta. Sekä kiinnostavaa että käytän-nöllistä on löytää keinoja selvittää onko jokin kokonaisluku jaettavissa millään toisella kokonais-luvulla. Näitä keinoja tai algoritmeja kutsutaan alkulukutesteiksi ja ne esiintyvät merkittävässäroolissa nykyaikaisessa tietoturvassa ja salaamisessa.Tässä työssä esitellään alkeellisia alkulukutestejä kuten Eratostheneen seula, Wilsonin lause ja Fer-mat’n testi, sekä suurten alkulukujen testaamiseen käytettyjä tehokkaampia menetelmiä. Alkulu-kutestit jaotellaan deterministisiin sekä probabilistisiin testeihin sen mukaan, antavatko ne var-man oikean tuloksen vai jollain tunnetulla todennäköisyydellä epävarman tuloksen. Epävarmempiprobabilistinen testi on kuitenkin determinististä käytännölisempi, sillä se voidaan ajaa riittävänmonta kertaa luotettavan tuloksen saamiseksi ja silti suoriutua determinististä testiä nopeammin.Erityisesti työssä keskitytään Miller-Rabinin probabilistiseen eli satunnaistettuun alkulukutestiin,joka on algoritmina nopea eli tehokas suuria lukuja testatessa. Työssä esitellään myös ensimmäi-nen polynomisessa ajassa suoriutuva deterministinen alkulukutesti AKS, jonka suoritumisaika elilaskutoimitusten lukumäärä on polynominen testattavan luvun numeroiden määrän suhteen.Työssä käydään läpi lukuteoreettista taustaa siinä määrin, kuin on alkulukutestien ymmärtämi-sen osalta oleellista, sekä katsastetaan myös lukuteorian sisältöjä ja opetusta lukiossa. Oleellinentaustateoria sisältää muun muassa kogruenssin, kiinalaisen jäännöslauseen, sekä Fermat’n pienenlauseen. Työssä esitellään myös Mersenneen alkuluvut ja näihin liittyvä yksinkertainen ja tehokasLucas-Lehmerin deterministinen alkulukutesti.Lukuteoriaa opetetaan vain vähän tai ei laisinkaan perusopetuksessa niin Suomessa kuin maail-mallakin. Lukion valinnainen kurssi Algoritmit ja lukuteoria antaa riittävät valmiudet tutustua it-senäisesti alkulukutesteihin tarvittavaan pohjateoriaan, kuten Fermat’n pieneen lauseeseen, muttakurssin varsinaiseen sisältöön alkulukujen testaus ei kuulu alkeellisimpia menetelmiä lukuunotta-matta.Lukuteoreettisten ongelmien pohtiminen ja lukuteorian käsitteiden opiskelu edistää opiskelijoidensuhtautumista matematiikkaan, vaikuttaa positiivisesti näiden metakogniitiivisiin kykyihin, sekäedistää ongelmanratkaisun ja todistamisen taitoja.
  • Siivonen, Teemu (2022)
    Tämän tutkielman tarkoituksena on tarkastella antiikin Kreikan suurimpia matemaatikoita ja heidän tutkimuksiaan sekä niiden merkitystä tämän päivän matematiikan kannalta. Tutkielman toisena tarkoituksena on tarkastella miten hyvin antiikin Kreikan matematiikan merkitys ilmenee tämän päivän koulujen opetuksessa ja mitä kouluista valmistuneet ihmiset siitä tietävät. Tutkielman ensimmäisessä osiossa esitellään antiikin Kreikan suurimpia matemaatikoita. Tutkielmassa aloitetaan Thaleesta ja Pythagoraasta sekä Pythagoralaisesta matematiikasta. Sen jälkeen esitellään Platonin Akatemia ja Zenonin paradoksit. Sen jälkeen siirrytään tutkimaan Eukleideen Alkeita, Arkhimedesta sekä Apolloniosta. Ensimmäisen osion lopuksi tutustutaan vielä Diofantokseen, Pappokseen ja antiikin Kreikan matematiikan päätökseen. Tutkielman toinen osio koostuu suurelta osin kenttätutkimuksesta. Siinä tutkitaan antiikin Kreikan matematiikan esiintymistä matematiikan Kuutio-kirjasarjassa. Sen lisäksi esitellään kyselytutkimuksen tuloksia. Tutkimuksessa selvitettiin vastaajien käsityksiä antiikin Kreikan matematiikasta, miten tärkeänä he pitävät antiikin Kreikan matematiikkaa tämän päivän matematiikan kannalta ja miten hyvin he muistivat Pythagoraan lauseen. Lisäksi kyselyssä kysyttiin kuvien käytöstä opetuksessa sekä miten vastaajat itse parantaisivat matematiikan opetusta. Kyselyyn vastanneiden mielestä antiikin Kreikan matematiikka on ollut ainakin tärkeä pohja tämän päivän matematiikalle. Monet uskoivat kreikkalaisten laskeneen monimutkaisia laskuja, mutta heillä ei ollut mitään konkreettista kuvaa antiikin Kreikan matematiikasta. Monet toivoivat, että opetuksessa käytettäisiin enemmän kuvia ja asiat selitettäisiin selvästi vaihe vaiheelta. Opetettavat asiat tulisi myös jotenkin liittää oppilaille mieleisiin asioihin.
  • Vaheri, Ville (2022)
    Tässä tutkielmassa käsitellään Apollonioksen ongelmaa, joka on nimetty antiikin ajan matemaatikko Apollonios Pergalaisen mukaan. Apollonios oli yksi antiikin ajan tunnetuimmista matemaatikoista heti Arkhimedeen ja Eukleideksen jälkeen. Tutkielman ensimmäisessä luvussa eli johdannossa lukijalle kerrotaan lyhyesti, mitä tutkielma sisältää. Toisessa luvussa esitellään lyhyesti, mistä Apollonioksen ongelmassa on kyse. Tavoitteena on löytää ympyrä, joka sivuaa kolmea muuta tason geometrista muotoa tasan yhdessä pisteessä. Annetut kolme muotoa voivat olla pisteitä, suoria tai ympyröitä, joten erilaisia tilanteita on kymmenen. Kolmannessa luvussa esitellään Apollonioksen ongelman historiaa ja tunnettuja matemaatikkoja, jotka ovat työskennelleet ongelman parissa. Neljännessä luvussa esitetään ratkaisu Apollonioksen ongelman kymmeneen eri tilanteeseen. Ratkaisut esitellään GeoGebralla piirrettyjen kuvien avulla. Tilanteista vaikeimpaan eli kolmen ympyrän tilanteeseen esitetään neljä erilaista ratkaisua. Ratkaisuista kolme ovat geometrisiä ja yksi on algebrallinen. Kolmen ympyrän tilanne voidaan ratkaista pienentämällä yhden ympyrän säde nollaksi, jolloin saadaan ratkaistavaksi tilanne, jossa on piste ja kaksi ympyrää. Ratkaisu saadaan myös hyperbelien leikkauspisteiden avulla. Viidennessä luvussa käydään läpi joitakin Apollonioksen ongelman käytännön sovelluksia. Ongelmaa hyödynnetään esimerkiksi GPS-paikannuksessa ja lääketieteessä. Tutkielman viimeisessä luvussa kirjoittaja pohtii, miten Apollonioksen ongelman voisi ottaa osaksi lukio-opetusta. Lukion opetussuunnitelman perusteita lukiessa huomataan, että aihe sopii oikein hyvin lyhyen ja pitkän matematiikan geometrian kursseille. Oppilaat saavat paljon harjoitusta GeoGebran käytöstä, mikä on lukio-opiskelijoille tärkeää. Luvussa pohditaan, millaisen tehtävänannon opettaja voisi oppilaille antaa. Joka tapauksessa kyseessä olisi oppilaille ongelmatehtävä.
  • Rönnqvist, Suvi (2020)
    Koulumatematiikka on ottanut valtavia harppauksia eteenpäin viime vuosien aikana. Vuonna 2014 hyväksytty perusopetuksen opetussuunnitelman perusteet toivat ohjelmoinnin osaksi matematiikan opetust. Opetussuunnitelmassa painotetaan paljon yleisesti sekä matematiikan osalta tieto- ja viestintäteknologian hyödyntämistä osana opetusta. Teknologia antaa runsaasti mahdollisuuksia työskentelyyn koulussa. Avaruusgeometriaa voi luoda, havainnoida tai tutkia siihen tarkoitetuilla sovelluksilla. Valmiiksi tehtyjä käyttökelpoisia appletteja löytyy esimerkiksi GeoGebraltaa hyvin. Tästä voi olettaa, että oppikirjat antavat oppilaille paljon tukea teknologian hyödyntämiseen opinnoissa. Koulussa käytettävät oppimateriaalit muuttuivat viimeisimmän opetussuunnitelman myötä. Esimerkiksi materiaalit voivat olla digitaalisessa muodossa perinteisen kirjan sijaan. Perinteisissä oppikirjoissa on aikaisempien kirjojen tyyliin tehtäviä laidasta laitaan. Avaruusgeometriassa tehtävät painottuvat hahmottamiseen ja laskemiseen, mutta myös kolmiulotteiseen hahmottamiseen liittyviä tehtäviä on jonkin verran. Tieto- ja viestintäteknologiaa ei ole oppilaiden kirjoissa mainittuna tai tuotu esiin. Ylioppilastutkinnossa matematiikka on suoritettu keväästä 2019 alkaen sähköisenä kokeena. Peruskoulusta lukioon jatkaa yli puolet oppilaista, joten yläkoulun jälkeen oppilailla on muutama vuosi lukiossa aikaa omaksua erilaiset sähköiset työkalut. Lukiossa opiskeleville olisivaltavasti etua, jos perusopetuksessa tutustuttaisiin esimerkiksi geometrisiin piirtotyökaluihin. Nivelvaihe peruskoulun ja lukion välillä on joka tapauksessa suuri harppaus. Perusopetuksen matematiikan opetusmateriaaleissa ei ole hyödynnetty teknologiaa avaruusgeometriassa. Lisätutkimus teknologian integroimisesta osaksi matematiikan ja avaruusgeometrian opetusta olisi toivottavaa.
  • Silander, Otto (2019)
    Tässä tutkimuksessa luodaan yleiskatsaus babylonialaiseen matematiikkaan, perehdytään sen saavutuksiin ja erityispiirteisiin ja pohditaan sen suurimpia ansioita. Lisäksi selvitetään miten babylonialainen matematiikka on vaikuttanut matematiikan kehitykseen ja miten babylonialaiset keksinnöt ovat päätyneet erityisesti kreikkalaisten matemaatikoiden käyttöön. Babylonialaisen matematiikan lisäksi tutkitaan myös babylonialaista astronomiaa soveltuvin osin. Tutkimuksessa selvitetään myös onko babylonialaisella matematiikalla yhteyksiä nykyaikaan ja erityisesti tapaan jakaa tunti 60 minuuttiin ja minuutti 60 sekuntiin ja ympyrän kehäkulma 360 asteeseen. Tutkimus toteutettiin kirjallisuuskatsauksena käyttämällä mahdollisimman laajasti sekä babylonialaista matematiikkaa koskevia perusteoksia että uusimpia artikkeleita. Matemaattisten saavutusten siirtymistä lähestyttiin tutkimalla tunnettuja kreikkalaisen matematiikan ja astronomian keskeisiä henkilöitä ja heidän yhteyksiään babylonialaiseen matematiikkaan. Näiden pohjalta muodostettiin yhteneväinen kokonaisuus babylonialaisen matematiikan saavutuksista ja tiedon siirtymisestä. Babylonialainen matematiikka käytti omaperäistä ja edistyksellistä seksagesimaalijärjestelmää, jonka kantaluku oli 60 ja joka oli ensimmäinen tunnettu numeroiden paikkajärjestelmä. Babylonialaisia matemaatikoita voidaan perustellusti sanoa antiikin parhaiksi laskijoiksi. He tunsivat monia tunnettuja lauseita kuten Pythagoraan lauseen ja Thaleen lauseen, osasivat ratkaista toisen asteen yhtälön ja käyttivät erilaisia tehokkaita algoritmeja likiarvojen laskemiseen yli tuhat vuotta ennen kreikkalaisia. Kreikkalaisten ensimmäisinä matemaatikkoina pitämät Thales ja Pythagoras oppivat ilmeisesti tunnetuimmat tuloksensa babylonialaisilta ja heidän merkityksensä on ensisijaisesti tiedon kuljettajana ja matematiikan eri osasten järjestelijöinä. Babylonialainen astronomia oli edistyksellistä ja kreikkalainen Hipparkhos hyödynsi babylonialaisten tekemien havaintojen lisäksi myös babylonialaista laskutapaa tehdessään omia tutkimuksiaan. Näiden ratkaisujen pohjalta ympyrä jaetaan vielä nykyäänkin 360 asteeseen, joista jokainen aste jakautuu 60 osaan. Samalla babylonialaiseen matematiikkaan perustuvalla periaatteella myös tunnit ja minuutit on jaettu 60 osaan.
  • Pentti, Toni (2021)
    Tämän tutkielman tarkoitus on esitellä ja todistaa eräs topologisiin ryhmiin liittyvä lause. Lause kertoo topologisen ryhmän oleva metristyvä avaruus, mikäli ryhmän neutraalialkiolla on numeroituva ympäristökanta. Tutkielmassa käsitellään tarkemmin topologisiin ryhmiin liittyviä tuloksia ja niiden seurauksia. Ensimmäinen kappale on varattu johdannolle. Heti alussa käydään läpi miksi tutkielman tulos on merkittävä ja miksi siihen on järkevää paneutua. Tutkielmassa esitellään oleelliset lähtötiedot, jotta lukijan on helpompi tutustua varsinaiseen aiheeseen. Toisessa kappaleessa kerrotaan tärkeimmät käsitteet ja ne yritetään mahdollisimman selvästi selittää lukijalle. Tässä kappaleessa käydään myös läpi tutkielmassa käytettyjä merkintätapoja. Kolmannessa kappaleessa tutustutaan topologisiin ryhmiin ja niihin liittyviin tuloksiin. Kappaleessa on lyhyesti esiteltynä topologisen ryhmän määritelmä, pohjaten algebran määrittelemään ryhmän käsitteeseen ja yleisen topologian määräämiin ehtoihin. Topologisille ryhmille johdetaan kaksi lausetta, jotka ovat tutkielman päätuloksen todistusta varten oleellisia. Ensimmäinen lauseista kertoo, että neutraalialkiolle voidaan rakentaa symmetrisiä ympäristöjä niin, että niiden tulo kuuluu aina johonkin toiseen ympäristöön. Toinen lauseista taas antaa tiedon siitä kuinka neutraalialkiolle löytyy ympäristöjä johon jokin toinen alkio ei kuulu. Nämä lauseet antavat työkalut rakentamaan ryhmän alkioille avoimia ympäristöjä, joita käytetään taas edelleen sopivia ympäristökantoja rakennettaessa. Tässä kappaleessa käydään läpi kaikki tarvittava päätulosta varten. Tutkielman varsinainen päätulos esitellään lyhyesti kappaleen neljä alussa. Kappaleessa todistetaan vaihe vaiheelta topologisen ryhmän neutraalialkiolle rakennetun numeroituvan ympäristökannan avulla, että löydetään metriikka joka määrittää avoimet joukot siten, että ne ovat samoja kuin topologian määräämät avoimet joukot. Tulos on merkittävä siksi, että se antaa työkalun tarkastella topologisten ja metristen avaruuksien yhteyksiä. Lähtökohta työlle oli kirjoittajan oma kiinnostus topologisiin ryhmiin ja niihin liittyviin tuloksiin. Tavoitteena oli todistaa tärkeä tulos topologian alalta, joka auttaa linkittämään topologiset ja metriset avaruudet toisiinsa.
  • Rautaoja, Jukka (2020)
    Tässä tutkielmassa esitetään Cauchy-Eulerin yhtälö, sen ratkaisu ja kaksi sovellusta sen monista sovelluksista. Cauchy-Eulerin yhtälö on homogeeninen lineaarinen differentiaaliyhtälö, jolla on muuttujakertoimet. Ensimmäisessä luvussa perustellaan aiheen valinta sekä kerrotaan perustietoja lineaarisista differentiaaliyhtälöistä ja Cauchy-Eulerin yhtälön historiasta. Toisessa luvussa esitetään Cauchy-Eulerin yhtälö ja osa yhtälön ratkaisun todistukseen tarvittavista aputuloksista. Kolmannessa luvussa todistetaan sekä toisen kertaluvun että n:nnen kertaluvun ratkaisu yhtälölle. Molempia todistuksia ennen esitetään todistuksien kannalta merkittävimmät aputulokset. Tärkeimpänä esimerkkinä mainittakoon Laplace-muunnos. Toisen kertaluvun ratkaisu todistetaan, koska se on helpompi ymmärtää, sitä tarvitaan molempiin sovelluksiin, ja koska se auttaa ymmärtämään n:nnen kertaluvun ratkaisua. Neljännessä luvussa yhtälölle esitetään kaksi sovellusta: Laplacen yhtälön napakoordinaattiesityksen ratkaisu ja Black-Scholesin yhtälön ratkaisu. Laplacen yhtälöä hyödynnetään kuvaamaan fysiikassa ajasta riippumattomissa tilanteissa tapahtuvia muutoksia esimerkiksi sähkömagneettisissa potentiaaleissa, tasaisissa lämpötiloissa ja hydrodynamiikassa. Yhtälön napakoordinaattiesitystä käytetään sellaisissa tilanteissa, joissa ympäristö on ympyrän rajaama kiekko. Black-Scholesin yhtälöä käytetään finanssimatematiikassa kuvaamaan osakeoptioiden arvonmuutosta. Siten molempia yhtälöitä käytetään paljon, ja ne ovat CauchyEulerin yhtälön tärkeitä sovelluksia. Viidennessä luvussa esitellään tutkielman tulokset. Tuloksina esitetään Cauchy-Eulerin yhtälön n:nnen kertaluvun ratkaisu, Laplacen yhtälön napakoordinaattiesityksen ratkaisu ja Black-Scholesin yhtälön ratkaisu. Sekä Laplacen yhtälön napakoordinaattiesityksen että Black-Scholesin yhtälön ratkaisu saadaan muuttujien separoinnin avulla, jolloin saadaan kaksi eri yhtälöä, joista toinen on toisen kertaluvun Cauchy-Eulerin yhtälö, jonka ratkaisu aiemmin todistettiin.
  • Tiihonen, Viivi (2021)
    Tämä maisterintutkielma pyrkii havainnollistamaan lukion lyhyen ja pitkän matematiikan opiskelijoiden osaamista valtakunnallisissa ylioppilaskirjoituksissa. Aiheeseen paneudutaan analyysitason funktion derivaatan määrittelyn kautta ja lisäksi sivutaan lyhyesti lukion opetussuunnitelman perusteita vuosilta 2015 ja 2019. Tarkastelun myötä huomataan, että lukion lyhyen matematiikan derivaattakurssin funktion derivaatan määritelmä jää melko kauas tarkasta määritelmästä, kun taas pitkässä matematiikassa päästään hyvin lähelle todellisuutta. Lukiossa saadun opetuksen havainnollistamiseksi tehdään lyhyt oppikirjatarkastelu sekä lyhyen että pitkän matematiikan oppikirjoista. Tutkielmassa käydään laajasti ja perustavanlaatuisesti läpi viimeisen viiden vuoden matematiikan ylioppilaskokeiden derivaattaan painottuvat tehtävät. Tehtäviä analysoidaan niin määrällisesti kuin laadullisestikin sekä lyhyen että pitkän matematiikan osalta. Tutkimus osoittaa, että derivaattatehtäviä on ollut lyhyen matematiikan ylioppilaskokeissa parhaimmillaan kolme kappaletta, kun taas pitkässä matematiikassa suurin derivaattatehtäväesiintyvyys nousee jopa kuuteen tehtävään per koe. Lyhyen matematiikan kokeissa ei abstrakteiksi luokiteltavia tehtäviä ole ollut laisinkaan, pitkässä matematiikassa niitä on ollut muutamia. Kaikissa matematiikan ylioppilaskokeissa derivaattapainotteiset tehtävät ovat olleet hyvin pitkälti soveltaviksi luokiteltavia. Ylioppilaskokelaiden osaamista tutkitaan Ylioppilastutkintolautakunnan laatimien pisteytysohjeiden avulla. Analyysissä huomataan, että yksittäisten derivaattatehtäviksi luokiteltujen derivaattaosuuksista saatavat suurimmat pistemäärät ovat noin kolmasosan luokkaa sekä lyhyen että pitkän matematiikan ylioppilaskokeissa. Pisteytysohjeiden mukaista tehtäväanalyysiä tehdään tutkielmassa yksityiskohtaisesti. Tutkielman suurin painoarvo on derivaattatehtävien pistejakaumissa ja niiden analysoinnissa. Työssä tutkitaan tehtävistä saatuja pistemääriä tehtävien tyypin, laadun ja vaikeusasteiden mukaan. Tutkimus osoittaa, että lyhyessä matematiikalla osataan sekä parhaiten että huonoiten funktion derivointia sekä sen arvon laskemista tietyssä pisteessä. Perustehtävistä saatiin enemmän pisteitä kuin soveltavista tehtävistä ja helppoja tehtäviä osattiin selkeästi paremmin kuin vaikeusasteeltaan haastavampia tehtäviä. Kuitenkin lyhyen matematiikan opiskelijat valitsivat kokeissa eniten soveltavia tehtäviä sekä vaikeusasteeltaan abstrakteja tehtäviä. Pitkän matematiikan kirjoittaneet taas osaavat parhaiten perinteistä funktion derivointia ja huonoiten funktion derivoituvuuden tarkasteluun liittyviä sovelluksia. Tehtävien laatu- ja vaikeusasteluokittelussa hajontaa esiintyi jonkin verran. Tutkimus osoittaa, että pitkän matematiikan opiskelijat valitsevat ylioppilaskokeissa mieluiten ääriarvotehtäviä ja vähemmälle suosiolle jäävät derivoituvuuden tutkimiseen painottuvat tehtävät.
  • Nurmiainen, Tuomas (2021)
    Tämän tutkielman tavoitteena on tutustuttaa lukija yksinkertaisiin stokastisiin prosesseihin esimerkkien avulla. Tämän lisäksi esitellään stokastisten prosessien perusominaisuuksia. Stokastiset prosessit ovat matematiikassa osa todennäköisyyslaskennan osa-aluetta. Tutkielman alussa käydään läpi todennäköisyyslaskennan peruskäsitteitä, jotka ovat välttämättömiä stokastisten prosessien ymmärtämisessä. Tämän jälkeen esitellään stokastisten prosessien perusominaisuuksia. Tutkielmassa esiteltävät stokastiset prosessit ovat Bernoullin prosessi, satunnaiskulku ja Poissonin prosessi. Jokaisesta prosessista esitetään esimerkkejä ja niihin käytettäviä jakaumia. Lopuksi on pohdintaa stokastisten prosessien hyödyntämisestä lukio-opetuksessa lyhyen ja pitkän matematiikan osalta. Pohdinta on käyty uuden opetussuunnitelman LOPS19 tavoitteiden ja sisällön mukaan. Pitkässä ja lyhyessä matematiikassa on molemmissa yhden moduulin sisällössä määritelty binomijakauma, jota voidaan käyttää joidenkin stokastisten prosessien tutkimisessa.
  • Kivioja, Timo (2020)
    Kieli on keskeinen osa oppimista ja niitä ei voida erottaa. Tieteellä on oma kieli, joka eroaa merkittävästi opiskelijoiden tuntemasta arkikielestä monella tapaa. Tieteellinen kieli sisältää suuren määrän informaatiota lyhyessä tekstissä, sisältää opiskelijoille tuntemattomia termejä ja myös lauserakenne on erilainen. Opiskelijoiden tieteen oppimisessa tieteellisen kielen oppiminen onkin yksi suurimmista ongelmista. Tämän vuoksi tulevien fysiikan aineenopettajien kielellisten ilmaisujen tutkiminen on tärkeää. Opinnäytetyössä analysoidaan fysiikan aineenopettajaopiskelijoiden tuottamia tekstejä fysiikan aineenopettajakoulutuksen kurssilta. Aineisto koostuu 12 tekstistä kuudelta eri fysiikan aineenopettajaopiskelijalta. Tarkoituksena on vastata tutkimuskysymyksiin: 1. Miten voimme analysoida aineenopettajaopiskelijoiden sanaston käyttöä? ja 2. Miten fysiikan aineenopettajaopiskelijat käyttävät kaksoisrakokokeen sanastoa? ja kehittää luotettava ja toistettavissa oleva analyysiprotokolla, jolla voidaan analysoida suomenkielisiä tekstejä. Analyysinlopputulos on yksinkertaistettu muoto aineistosta, jota voidaan analysoida tulevaisuudessa mahdollisesti tietokoneella. Teoriaosassa käsitellään lisäksi käsitteitä, käsitteellistä muutosta sekä semanttisia ja sanastollisia verkkoja. Tuloksena itse analyysin tuloksien lisäksi on analyysiprotokolla, jolla pystytään analysoimaan suomenkielisiä tekstejä. Fysiikan aineenopettajaopiskelijoiden tekstien analyysistä saatiin selville, että aineenopettajaopiskelijoiden sanaston käyttö on varsin laajaa ja monipuolista. Analyysin perusteella saatiin myös selville teksteissä esiintyviä mm. tekstissä esiintyviä lauseenrakenteita ja että teksteissä fysiikan aineenopettajaopiskelijat vaihtoivat aihetta melkein joka toisessa virkkeessä. Analyysiprotokollaa pystytään kuitenkin vielä jatkossa tarkentamalla ja selventämällä sitä. Analyysiprotokollan luotettavuutta pitäisi myös tutkia siten, että toinen analyysin tekijä suorittaisi analyysin.
  • Peltonen, Else (2020)
    Tässä työssä on tavoitteena esittää yksi opetuksellinen malli sille, miten fysiikkaa voidaan opettaa huvipuistokontekstissa lukiotasolla. Työssä selvitettiin, millaisia fysiikan ilmiöitä huvipuistossa voidaan havaita, miten huvipuistolaitteita voidaan hyödyntää lukion fysiikan kokeiden tekemisessä ja miten huvipuistovierailua voidaan hyödyntää lukion fysiikan opetuksessa. Työn teoriaosuudessa tarkastellaan kiinnostuksen kehittymistä, johon opettaja voi vaikuttaa valitsemillaan sisällöillä, konteksteilla ja opetustavoilla. Koulun ulkopuolella tapahtuvalla oppimisella voi olla vaikutusta kiinnostukseen ja oppimiseen, ja huvipuisto voi tarjota tällaisen kiinnostusta lisäävän kontekstin. Lisäksi tarkastellaan huvipuistolaitteisiin liittyviä fysiikan ilmiöitä: dynamiikkaa, energiamuutoksia ja sähkömagnetismia. Työssä esitellään erilaisia mittausvälineitä ja älypuhelinsovelluksia, joita huvipuistossa tehtävissä mittauksissa voidaan käyttää, ja niihin liittyviä suureita. Lisäksi esitellään Linnanmäen huvipuistossa mahdollisia mittauksia. Työssä toteutettiin empiirinen tutkimus Linnanmäen huvipuistossa opiskelijaryhmän kanssa. Kolmiosainen vierailu toteutettiin yhteistyössä pääkaupunkiseudulla sijaitsevan lukion kanssa ja siihen sisältyi harjoittelu- ja analysointiosuudet koululla sekä mittausosuus Linnanmäellä. Mittauksissa käytettiin Vernierin LabQuest 2 -laitteistoa. Seuraavissa tutkimuksissa voitaisiin selvittää, missä määrin huvipuistokonteksti lisää kiinnostusta fysiikkaan ja onko huvipuistovierailulla vaikutusta fysiikan oppimiseen.
  • Flinkman, Liia (2022)
    Tavoitteet. Tutkimuksen tavoitteena on selvittää, kuinka paljon yhdeksännen luokan matematiikan valtakunnallisia kokeita tulisi muuttaa, mikäli GeoGebra hyväksyttäisiin työvälineeksi kokeeseen. Kouluissa jatkuvasti käytetään yhä enemmän tietokoneita ja ohjelmistoja. Ylioppilaskokeet ovat sähköistyneet. On siis tärkeää kartoittaa, kuinka paljon valtakunnallisia kokeita pitäisi muuttaa, mikäli koe sähköistyisi tulevaisuudessa. Aiemmat tutkimukset ovat osoittaneet, että GeoGebra parantaa oppimistuloksia, asenteita ja motivaatiota matematiikan opiskelussa. Kuitenkin on havaittu, että tarpeeksi haastavien tehtävien suunnittelu GeoGebralle on haastavaa sekä joidenkin komentojen syöttämistapa on vaikea oppilaille. Tässä tutkimuksessa lisäksi pohditaan, miltä osin osaaminen kehittyy ja toisaalta heikkenee, kun käytetään GeoGebraa tehtävien ratkaisemisessa. Menetelmät. Tutkimuksessa tutkittiin kvalitatiivisesti ja kvantitatiivisesti vuosien 2012–2021 matematiikan valtakunnallisten kokeiden laskimellisia tehtäviä. Laadullisesti esitettiin joidenkin tehtävien ratkaisuja GeoGebra ohjelmistolla. Tutkimuksessa pohditaan, riittääkö oppilaan taidot realistisesti ratkaisemaan tehtäviä esitellyllä tavalla. Määrällisesti selvitettiin, kuinka suuri osa tehtävistä toimisi sellaisenaan GeoGebraa käyttäen. Tulokset ja johtopäätökset. Yli puolet tehtävistä tulisi muuttaa, jos GeoGebra sallitaan välineeksi kokeeseen. GeoGebra heikentää mekaanisen laskutaidon kehittymistä, mutta kasvat-taa muun muassa visualisointitaitoja. Laskimellisessa osassa kannattaa painottaa ratkaisun muita osia kuin mekaanisia laskuvaiheita kuten yhtälönratkaisua. Laskimettomassa osassa voidaan testata mekaaninen laskutaito.
  • Pyhäjärvi, Johanna (2019)
    Oppilaiden kiinnostus matematiikkaa kohtaan on tutkimusten mukaan laskussa. Samalla oppilaiden matematiikan osaamisen taso on heikentynyt. Matematiikan opettajien laadukkaalla koulutuksella pyritään vastaamaan opiskelijoiden heikentyneeseen matematiikan osaamiseen ja kiinnostukseen. Yksi keino lisätä matematiikan kiinnostavuutta, on kehittää matematiikan opettajien koulutusta relevantimmaksi opiskelijoiden näkökulmasta. Lisäksi tietotekniikan, kuten GeoGebran käytöllä opetuksessa on tärkeä rooli oppilaiden matematiikan kiinnostuksen lisäämisessä. Tässä tutkimuksessa tutkitaan matematiikan opettajille järjestettyä LUMA-keskuksen GeoGebra opetuksessa -verkkokoulutusta. Tutkimuksen teoriaosuudessa tarkastellaan GeoGebran käyttöä matematiikan opetuksessa, matematiikan opettajankoulutusta ja verkkokoulutusta sekä sen relevanssia. Tutkimuksen kohteena oli GeoGebra opetuksessa -verkkokoulutuksen suorittaneet opiskelijat (N=30). Opiskelijat olivat lukion, yläkoulun ja alakoulun opettajia sekä aineenopettajaopiskelijoita. Koulutus järjestettiin syksyllä 2018. Tutkimuksen tavoitteena oli selvittää, kuinka merkityksellinen koulutus oli opiskelijoille Stuckey et al. (2013) luoman relevanssiteorian mukaisilla relevanssin eri tasoilla. Tutkimuksessa tarkasteltiin myös sukupuolen vaikutusta opiskelijoiden näkemyksiin. Lisäksi tutkittiin mitä odotuksia opiskelijoilla oli koulutuksesta ja vastasitko koulutus niitä. Tutkimusmenetelmänä käytettiin kyselylomaketutkimusta. Kyselylomakkeen strukturoidut kysymykset analysoitiin sekä laadullisena että määrällisenä aineistona ja avoimet kysymykset analysoitiin sisällönanalyysin avulla. Tutkimuksen luotettavuutta tarkasteltiin realibiliteetin ja validiteetin avulla. Tutkimustulokset osoittavat, että GeoGebra opetuksessa -verkkokoulutus oli opiskelijoiden näkökulmasta relevanttia henkilökohtaisen ja ammatillisen relevanssin tasoilla yhteiskunnallisen tason jäädessä vähemmälle. Koulutuksen todettiin vastaavan vahvasti opiskelijoiden odotuksia koulutukselta. Opiskelijat kokivat koulutuksen erittäin hyödyllisenä oman työn kannalta. Tämä tutkimus antaa tietoa matematiikan opettajien verkkokoulutuksesta. Tutkimuksen tuloksia voidaan hyödyntää erityisesti GeoGebra opetuksessa -koulutuksen kehittämisessä ja jatkotutkimuksessa.
  • Savolainen, Mikko (2022)
    Tässä tutkielmassa tarkastellaan, onko matematiikan ylioppilaskirjoitusten geometria tehtävissä tapahtunut muutosta kokeiden sähköistymisen seurauksena. Tarkastelussa on mukana pitkän ja lyhyen matematiikan kirjoitus kerrat kevät 2016 -- kevät 2021, joista kevät 2016 -- syksy 2018 ovat olleet ennen sähköistymistä ja kevät 2019 -- kevät 2021 ovat olleet sähköisiä kokeita. Tutkimuksessa vastataan kahteen tutkimuskysymykseen: "Onko geometrian tehtävät muuttuneet sähköistymisen seurauksena ja jos on, niin miten muutos on nähtävissä?" ja "Miten geometria tehtävien osuus on muuttunut pisteytyksessä?". Ensimmäiseen kysymykseen tutkimus pyrkii vastaamaan tarkastelemalla sähköistä ympäristöä ja sen mukana tulleita apuvälineitä. Sen lisäksi syvällisempää tarkastelua varten jokainen tehtävä on arvioitu Bloomin taksonomian asteikolla. Asteikon avulla tehtäviä ja niiden haastavuutta on vertailtu keskenään. Seuraavaan kysymyksen vastaamiseen tukimuksessa on käytössään ylioppilastutkintolauttakunnalta saatu data lyhyen ja pitkän matematiikan ylioppilaskokeiden tuloksista. Datasta on nostettu esille geometria tehtävistä saatujen pisteiden prosentuaalinen osuus kokeiden pisteytyksessä, johon on vaikuttanut kokeessa esiintyvien tehtävien määrä ja niistä saadut pisteet. Jokaiselle kokeelle on laskettu myös geometria tehtävistä saatujen pisteiden painotettu keskiarvo, joka kertoo tehtävien haastavuudesta. Datassa on ollut laskettuna myös CORR-menettelyn avulla Pearson korrelaatiot tehtävien välille, sekä korrelaatiot kokeista saatujen pisteiden kanssa. Tutkimuksessa nostetaan esille geometrian tehtävistä saatujen pisteiden korrelaatiot kokeesta saatujen pisteiden kanssa. Korrelaatio antaa arvion siitä, kuinka hyvin tehtävien haastavuus on ollut linjassa kokeen muiden tehtävien kanssa. Tulosten avulla tutkija vertailee sähköisiä ja ei-sähköisiä kokeita keskenään ja nostaa esille merkittävimmät muutokset niiden välillä. Tutkimuksessa käydään läpi myös geometrian ja ylioppilaskirjoitusten historiaa, jonka tarkoituksena on pohjustaa tutkimuksessa käsiteltävää aihetta. Tutkimuksessa on käyty myös läpi, mitkä tehtävät tutkimus laskee geometrian tehtäviksi hyödyntäen lukion perusopetussuunitelmissa esiintyviä geometrian kursseja. Ylioppilastutkintolauttakunnan tarjoama data antaa ymmärtää, että pitkän matematiikan tehtävät olisivat helpottuneet samalla, kun niiden määrä on vähentynyt. Lyhyessä matematiikassa sähköisissä kokeissa on ollut enemmän geometrian tehtäviä, mutta niiden vaikeudesta ei pysty datan avulla tekemään selkeää johtopäätöstä. Bloomin taksonomian mukaan pitkässä matematiikassa ei ole ollut merkittävää muutosta. Lyhyessä matematiikassa tehtävät ovat yleisesti helpottuneet, mutta vaikeimmat tehtävät löytyvät myös sähköisistä kokeista. Eniten muutosta on ollut itse sähköistymisessä, kun paperisista kokeista on vaihdettu sähköiseen koeympäristöön. Sähköistymisen mukana on tullut uudenlaisia havaintomateriaaleja, apuvälineitä ja tehtävätyyppejä.
  • Eerola, Juho (2022)
    Tähän Pro graduun on koottu Pythagoraan lauseen, kosinilauseen ja Stewartin lauseen todistuksia ja niihin liittyviä lukiotasoiselle opiskelijalle haastavia tehtäviä. Tavoitteena on antaa opettajalle opetusmateriaalia erityisesti matematiikassa korkean taitotason omaavien opiskelijoiden haastamiseksi. Esimerkkitehtäviä ja niiden ratkaisuja on työhön poimittu erityisesti matematiikkakilpailuista, mutta myös ylioppilaskokeista ja niiden haastavuus on vaihteleva. Kuitenkin tehtävien vaikeusaste on yleisesti lukion tason tehtäviksi sieltä haastavimmasta päästä. Mahdollisuuksia tehtävien asteittaiseen helpottamiseen on monien tehtävien kohdalla kuitenkin mainittu. Tehtävien vaativuutta tarkastellaan myös Bloomin taksonomian näkökulmasta. Bloomin taksonomia on hyvin tunnettu mittari opettajien keskuudessa. Se jaottelee osaamisen tasot kuuteen luokkaan: tietää, ymmärtää, soveltaa, analysoida, syntetisoida ja arvioida. Luokittelun mukaan siirryttäessä kohti jälkimmäisenä mainittuja tarvitaan hyödyntämiseen tehtävänratkaisussa aina korkeamman ajattelun tasoja.
  • Gröhn, Juho (2021)
    Tässä tutkielmassa käsitellään hiloja ja niiden sovelluskohteita eri matematiikan osa-alueilla. Työn ensimmäisessä puolikkaassa esitellään hilat käsitteenä ja todistetaan hiloihin liittyvät kaikkein keskeisimmät tulokset. Kappaleessa 2 esitellään useita hilojen helposti todistettavia ominaisuuksia. Tällaisia ominaisuuksia ovat esimerkiksi hilan perussuunnikkaan koon riippumattomuus kannan valinnasta sekä Minkowskin ensimmäinen lause. Kappaleessa 3 esitellään ja todistetaan Minkowskin toinen lause. Lisäksi esitellään kaikki se teoria, joka täytyy tuntea todistuksen ymmärtämiseksi ja jota ei voi olettaa yleissivistykseksi. Tällainen on esimerkiksi Jordan-sisällön käsite. Työn jälkimmäisessä puolikkaassa esitellään, miten hilat ja niihin liittyvä teoria yhdistyy moniin sellaisiin aiheisiin, joiden yhteys hiloihin ei ole aivan ilmeinen. Kappaleessa 4 esitellään Gaussin kokonaisluvut ja niihin liittyvä ympyräongelma. Ympyräongelmalle johdetaan muutama kohtalaisen alkeellinen tulos. Kappaleessa 6 esitellään ympyräpakkausongelmat ja ympyräongelmien tunnetut ratkaisut. Kaikki tunnetut ratkaisut ovat hilapakkauksia. Kappaleessa 7 esitellään, miten hiloihin liittyvä teoria sidostuu tietojenkäsittelytieteeseen. Esitellään virheenkorjausalgoritmien ja optimaalisten hilapakkausten välistä suhdetta. Esitellään myös lyhimmän ja lähimmän hilapisteen ongelmat ja todistetaan ongelmille muutama alkeellinen tulos. Aivan työn lopuksi, yhteenvetokappaleessa 8, pohditaan mitä yhtymäkohtia hilateorialla on yläasteen ja lukion matematiikan oppimääriin ja miten hilateoriaa voisi hyödyntää näiden oppilaitosten matematiikan opetuksessa.
  • Lähteenmäki, Henry (2019)
    Tämän työn tarkoitus on helpottaa opettajia ja koulutusalan asiantuntijoita lähestymään Wilberin Integraaliteoriaa ja integraaliopetusta. Integraaliteoriaa viitekehyksenä käyttävä integraaliopetus on yksi varteenotettavimmista vaihtoehdoista tulevaisuuden integraaliseksi ja mahdollisimman kokonaisvaltaiseksi opetusmenetelmäksi. Teoria-osiossa käydään läpi Integraaliteorian teorian tausta ja kehitysvaiheet. Sitten esitellään Integraaliteorian tärkeimmät osapuolet: AQAL matriisi, Wilber-Combs hila ja Integraalinen Metodologinen Pluralismi. Seuraavaksi keskustellaan integraaliopetuksesta, sen tarpeesta ja tunnuspiirteistä, ja siitä miten integraaliopetuksessa tulisi huomioida Integraaliteorian tärkeimmät osapuolet. Lopuksi pohditaan opettajan roolia ja integraaliopetuksen haasteita. Työn empiirinen osa koostuu toukokuussa 2018 Meksikossa Tecnologico de Monterrey -yliopiston Tampicon kampuksella tehdystä kyselytutkimuksesta. Kysetutkimuksen tarkoituksena oli selvittää opiskelijoiden subjektiivisia asenteita, mielipiteitä ja kokemuksia integraaliopetuksesta. Vastauksille suoritettiin tilastollinen analyysi SPSS ohjelmistolla. Opiskelijat arvioiva integraaliopetuksen hyödyn korkeaksi oppimiselle ja opiskelulle. Heidän arvioiden perusteella myös integraalinen lähestymistapa elämää kohtaan ylipäätään arvioitiin hyödylliseksi. Integraaliopetuksen transformatiivinen potentiaali arvioitiin korkeaksi. Lisäksi opiskelijat pitivät integraaliopetuksen piirteitä ja tavoitteita tärkeinä opetukselle. Vertailuryhmien (sukupuoli, ikä, opintolukukaudet yliopistossa, lukion keskiarvo ja yliopiston keskiarvo) sisäisien ryhmien vastauksien tilastollista poikkeavuutta ei löytynyt. Täten, opiskelijat arviot integraaliopetuksesta olivat positiivisia riippumatta taustatekijöistä.
  • Matikainen, Minna (2021)
    Tutkielman lähtökohtana oli etsiä keinoja hyödyntää mobiililaitteita suomalaisen koulun matematiikan opetuksessa. Keinoksi valikoitui Ismo Kiesiläisen kehittämä kamerakynän pedagogiikka, jonka ideana on ilmaista ajattelua videokuvaamisen avulla. Kamerakynän pedagogiikan käyttämistä matematiikan opetuksessa on haastavampaa kuin esimerkiksi kemian opetuksessa. Helpotusta tähän haasteeseen etsitään hollantilaisesta matematiikan opetuksen teoriasta nimeltä realistinen matematiikan opetus (RME), joka on Hans Freuthendalin aikaansaannosta. Tässä tutkielmassa tavoitteena on soveltaa RME:tä kamerakynän pedagogiikkaan. Kamerakynän pedagogiikasta ei ole tutkimusta, joten sitä tarkastellaan muun muassa Pekrunin akateemisten tunteiden tutkimuksen kautta. Ensimmäisessä osassa selvitetään, miten RME on kehittynyt, mitä RME tarkoittaa ja mitkä ovat sen periaatteet sekä miten RME näkyy matematiikan tehtävissä. Toisessa osassa ensin kerrotaan, mitä kamerakynän pedagogiikka tarkoittaa, sitten tarkastellaan tutkimusten kautta, mitä hyötyä siitä on oppimisessa ja lopuksi käydään läpi, mitä kamerakynän pedagogiikka on käytännössä matematiikan näkökulmasta. Tutkielman kolmannessa osassa tarkastellaan, miltä kamerakynän pedagogiikka näyttää RME:n näkökulmasta. Lopuksi on esitetty kaksi kamerakynätehtävää yläkoulun matematiikan opetukseen. Tutkielman perusteella kamerakynätyöskentely sopii yhdeksi keinoksi toteuttaa realistisen matematiikan opetuksen periaatteita ja tavoitteita. Tätä varten tarvitaan enemmän ideoita tehtäviin ja näiden tehtävien kokeilua käytännön työssä.
  • Hirvonen, Veikka (2022)
    Tässä tutkielmassa käsittelemme kartioleikkauksien määritelmiä, niiden yhteyttä lineaarialgebraan sekä kartioleikkauksia lukio- ja perusopetuksessa. Aluksi käymme läpi kartioleikkausten muodostumisen geometrisesti, sekä niiden yhtälöt standardimuodossa. Sitten siirrymme tutkimaan kartioleikkausten määritelmää tarkemmin. Tavoitteena on myös näyttää lukijalle paraabelin, ellipsin ja hyperbelin yhteyksiä, sekä esitellä kartioleikkauksiin liittyviä käsitteitä kuten eksentrisyys. Tutkielmassa perehdymme tarkemmin siihen, että miten lineaarialgebraa voidaan hyödyntää kartioleikkauksten tutkimisessa. Käytännössä esiintyvät kartioleikkaukset eivät ole aina standarimuodossa, mutta ne voidaan siirtää tai kiertää matriisien avulla takaisin siihen muotoon. Ilmaisemalla kartioleikkaukset niiden yleisessä muodossa, voimme siirtää niitä xy-koordinaatistosta johonkin toiseen koordinaatistoon, jonka avulla pystymme ilmaisemaan ne taas standardimuodossa. Lopuksi käymme vielä läpi miten kartioleikkaukset näkyvät opetuksessa, esimerkiksi ylioppilaskirjoituksissa.
  • Tran, Phuoc Huu (2020)
    Tutkimuksen tavoitteena oli validoida katseenseurantatutkimukseen liittyvä parametri, katsesynkronia, joka kertoo kahden tai useamman henkilön katseiden synkroniasta eli siitä, katsovatko henkilöt samassa järjestyksessä eri kohteita. Katsesynkronian validointi tehtiin tutkimalla sitä, mitkä tapahtumat johtivat korkeaan katsesynkroniaan, minkälaista vuorovaikutusta sen aikana oli ja mitkä tapahtumat päättivät sen. Samalla pyrittiin tutkimaan katsesynkronian yhteyttä yhdistyneeseen tarkkaavaisuuteen, johon liittyvät tutkimukset käsittelevät sitä lähes poikkeuksetta vain kahden henkilön välisenä vuorovaikutuksena, mikä johtuu ilmiön monimutkaisuudesta. Katseenseurantalaitteisto ja uusi parametri sen sijaan tarjoavat mahdollisuuden tutkia yhdistynyttä tarkkaavaisuutta kolmen tai useamman henkilön välisenä vuorovaikutuksena. Tutkimuksessa tarkastellaan matematiikan ongelmanratkaisuun liittyvällä oppitunnilla neljän yhdeksäsluokkalaisen oppilaan ryhmää, jossa keskitytään kolmen oppilaan katseisiin. Oppilaiden katseet tallennettiin katseenseurantalaseilla, jotka eivät rajoittaneet liikkumista. Katsevideoita analysoimalla saatiin katsesynkroniakuvaajat, joita analysoitiin kvalitatiivisesti syventymällä kuvaajien huippuihin. Tutkimalla huippujen aikaista oppilaiden välistä vuorovaikutusta äänitallenteiden ja videomateriaalien avulla saatiin vastaukset tutkielman tutkimuskysymyksiin. Korkeaan katsesynkroniaan johtavat tapahtumat olivat suurelta osin opettajan intervention seurauksia, mikä kertoo opettajan tärkeästä roolista motivaatiota ylläpitävänä tekijänä. Korkean katsesynkronian aikana oppilaiden välinen vuorovaikutus oli monipuolista ja se sisälsi monia vuorovaikutuksen muotoja, joista puhe ja osoittavat eleet olivat yleisimpiä. Katsesynkronian päättyminen johtui ajoittain oppilaiden toiminnan muutoksesta, ja joskus toiminta pysyi samana, vaikka katsesynkronia laski. Yhdistyneen tarkkaavaisuuden ja korkean katsesynkronian välillä löydettiin vahva yhteys. Korkean katsesynkronian aikana oppilaat ohjasivat toistensa tarkkaavaisuutta lukuisilla tavoilla, jotka viittaavat yhdistyneeseen tarkkaavaisuuteen.