Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by master's degree program "Master 's Programme in Neuroscience"

Sort by: Order: Results:

  • Nykänen, Roope (2023)
    Diets of wild owls have been studied by pellets, when the nutritional value of owl prey remains unclear. Fatty acids are an essential part of animal nutrition, acting as energy reserve, building blocks of membranes and precursors for signaling molecules. I studied whether Finnish owl species have species-specific characteristics in the fatty acid profiles of adipose tissue due to different diets and feeding habits. I also compared fatty acid profiles between wild and captive owls to elucidate if the diet of captive owls resembles the diet in the wild. Fatty acids from visceral adipose tissue and a liver were transesterified to fatty acid methyl esters, which were identified and quantified by gas-chromatographs linked to either a mass spectrometry or flame ionisation detector. The fatty acid compositions were compared with Principal Component Analysis and statistical significance of the separations between species, origins and tissues were studied by Soft Independent Modelling of Class Analogies. Differences in the relative concentrations of individual fatty acids and their structural category sums were evaluated by the Kruskal-Wallis test followed by the Wilcoxon rank-sum test. Compared to wild owls, captive owl (snowy owl Bubo scandiacus and Eurasian eagle-owl Bubo bubo) adipose tissues had lower relative concentrations of many long-chain polyunsaturated fatty acids (PUFAs), such as arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid. The captive owls also had lower n-3 PUFA/n-6 PUFA ratio than the wild owls. I suggest that these differences arise from anthropogenic food given to the prey of the captive owls. In the future, the feeding and breeding of captive owls could be improved and potential health hazards prevented by giving the owls a diet rich in long-chain PUFAs, either by giving the prey more versatile diet or adding supplements to the owl’s diet. The adipose tissues of wild Eurasian eagle-owls contained higher total relative concentrations of monounsaturated fatty acids than the species belonging to the Strix genus. On the other hand, long-chain PUFAs were more prominent in the Strix owls. I suggest that these differences in the fatty acid composition are due to the disparities in feeding behaviour: the Eurasian eagle-owls eat carrions and large prey that cannot be swallowed whole, which may lead to consuming more the body outer parts of the prey. The fatty acid composition of the eagle-owls can also be affected by urban prey that have consumed anthropogenic food. In the future, the fatty acid composition of wild prey should be examined to be able to evaluate the prey composition of owls and its effect on the owl fatty acid profile with physiological consequences, the knowledge that could be used in the future decision-making that supports the conservation of owls.
  • Doutel Figueira, Joana Filipa (2022)
    The general question of this research is how beta oscillations are implicated in stopping an ongoing movement. Previous studies regarding movement cancellation have found a significant increase in beta activity in sensorimotor areas, especially in the form of transient increases in beta oscillations, called beta bursts. However, the functional role of beta band activity in stopping is still unclear, mainly because the behavioural tasks used cannot measure the exact timing when the subjects start the stopping process and therefore it is only possible to infer the stopping time. To resolve this, we used head-fixed rats running on a treadmill while performing a Go/NoGo task. In some NoGo trials, the rat starts to run, realizes the mistake and stops before crossing a fixed distance threshold. These are the events being analyzed, called near-mistake events (N=39,366). We found a single beta burst occurring prior to stopping in all five brain regions analyzed (from 44.2±20.1 ms to 55.8±16.0 ms) and positive correlations of beta burst number and power increase with movement speed before stopping. We also found a single alpha burst prior to and during stopping in all brain regions (from 45.9±20.1 ms to 57.1±19.3 ms), supporting previous studies’ findings of alpha band involvement in inhibitory motor actions. Our findings on beta bursts suggest a causality role in stopping an ongoing movement while our results of alpha bursts need to be further analyzed to understand its functional role.
  • Kantonistov, Mikhail (2023)
    Attention deficit hyperactivity disorder (ADHD) is a neuropsychiatric disorder characterized by inattention, hyperactivity and impulsivity. The symptoms appear in childhood and, if left untreated, can continue into adulthood affecting the quality of life. Currently, diagnosing a child's ADHD relies on subjective questionnaires filled out by a parent and an interview. The detection of changes in brain activity especially during everyday activities could bring important information that could help inform the diagnostics of ADHD. The changes in brain activity in persons diagnosed with ADHD during familiar, everyday events have been studied very little. However, ADHD brain imaging studies done during resting state and simple tasks have found changes in large-scale brain networks. These networks can be studied using functional connectivity approach, where the degree of synchronous activity in different brain regions is used to determine the connection strength between these regions. In this thesis, using functional magnetic resonance imaging, the differences in the functional connectivity of the whole brain between children diagnosed with ADHD (n=17) and controls (n=19) were investigated during a virtual reality task that simulates everyday life (EPELI), watching natural-like videos, and resting state. Connectivity matrices were generated with the NiLearn Toolbox program using Seitzman and colleagues' (2018) 300-area parcellation. The connectivity of the whole brain was examined using Network-Based Statistics. During movie watching the ADHD group showed increased connectivity compared to the control group in a network that included several areas of the motor cortex. This may indicate a role for these regions in the hyperactivity symptoms of ADHD. The same network also included the right superior temporal gyrus, which has previously been linked to impulsivity symptoms in individuals diagnosed with ADHD. During the virtual reality task and resting state, no differences in connectivity were observed between the groups. However, differences between the experimental situations were revealed in several networks when the connectivity was compared within the groups. Many of these networks were very extensive and included several subcortical and cerebellar structures in addition to cortical areas. Both the control and ADHD groups showed increased connectivity in the resting state compared to EPELI. This could possibly be due to the differences in the participants' actions during the task performance. To the best of the author's knowledge, this study is the first to examine the functional connectivity of brains diagnosed with ADHD during naturalistic stimuli. The clear differences between the controls and the ADHD group during movie watching are promising for future naturalistic brain studies. Based on the results, network models are effective in studying the functional connectivity of ADHD under different conditions. However, consideration for similarity of activities during the virtual task could have led to the detection of larger differences.
  • Toissalo, Emilia (2022)
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by selective loss of upper and lower motor neurons (MN), which causes progressive muscle weakness and paralysis. ALS leads to death typically from 2 to 4 years after diagnosis. It is important to find more effective treatment options for this devastating disease, as the current treatments can prolong the survival by only a few months. Mesencephalic astrocyte-derived neurotrophic factor (MANF) belongs to an evolutionary conserved neurotrophic factor (NTF) family, whose mode of action differs from classical NTFs. MANF is an endoplasmic reticulum (ER) resident protein and is secreted upon ER stress from the ER, and it can protect the cells from ER stress-induced cell death. MANF has shown to be neuroprotective and –restorative in Parkinson’s disease and stroke rodent models. Adeno-associated viral (AAV) vectors can be used to express therapeutic genes in the target tissues for several months, which lessens the need for repetitive dosing. In this master’s thesis project, we aimed to investigate the neuroprotective effects of intrathecally injected AAV1-MANF gene therapy in a SOD1-G93A mouse model of ALS. We used two different MANF genes; full-length MANF and MANF with deleted ER retention signal (MANF-d), to assess the differences between normal and only secreted MANF. Red fluorescent protein (RFP) was used as a control and to further evaluate the transduction and expression of the viral vectors. Intrathecal injections were performed once on 13 weeks old mice, just before the disease onset. Clinical symptom analyses together with a set of behavioral tests were conducted once a week. Mice were sacrificed at the endpoint of the study when they could no longer use their hind limbs for forwarding propulsion. Immunohistochemical staining was performed on spinal cord paraffin samples, where MN count, microglia activation, and RFP expression were evaluated. AAV1-MANF and AAV1-MANF-d treatments improved the motor behavior of the SOD1-G93A mice one-week post- injection. More specifically, a statistically significant difference was seen in the turning times in the static rods test on two different diameter rods compared to control, but there was no difference between MANF groups. In addition, there was a notable difference between AAV1-MANF and the control group on week 16 rotarod scores. There were no statistically significant differences in other tests, survival of the mice, MN counts, or microglia activation between the groups. RFP expression was detected mainly in the ventral areas of the spinal cord with immunohistochemistry. Our results indicate the potential of MANF gene therapy in the treatment of ALS. Furthermore, we showed that intrathecal AAV1-MANF injections were well tolerated.
  • Niemelä, Miska Aleksanteri (2022)
    Master's thesis project includes the backbone assignment of the human activity-regulated cytoskeleton-associated protein C-lobe (hArc, Uniprot ID: Q7LC44), 7-fluoroindole-based tryptophan-labeling method, and comparing that with the 100% double-labeled and 20%(13C) fractionally labeled samples. The project focuses on the effects of 7-fluoroindole-based fluorotryptophan-labeling. hArc C-lobe has only one tryptophan, which makes the analysis easier. Typically fluorotryptophan-labeling is a costly method – fluorotryptophan itself is very expensive and attaching the fluorine to the tryptophan while expressing is expensive and complicated. Fluoroindolebased labeling circles around the problem, as indole and serine are used in procaryotic systems for tryptophan biosynthesis – meaning that fluoroindole, which is cheap, could be used as an alternative for previous methods. Fluoro-labeled tryptophan is used in protein NMR; for example, in binding studies – fluorine-probes are sensitive, and binding of ligand or protein would move these peaks, indicating binding. This project aims to get an insight into the application of this labeling method. The goal is to see if one could utilize one sample with both (1H, 15N, 13C) labeling and 7-fluorotryptophan labeling for binding and structural studies. However, fluorine is very electronegative, affecting surrounding structures and possibly sequentially nearby amino acids. This possible effect will be observed and determined by comparing the 1H15N-chemical shifts between well-established labeling methods and fluoroindolebased labeling. To determine what amino acids in the protein are affected, if they are affected, will be determined by using the backbone assignment results and the results from the sample comparisons.
  • Garnier Artiñano, Tomás (2021)
    Effective population coding is dependent on connectivity, active and passive postsynaptic membrane parameters but how it relates to information transfer and information representation in the brain is still poorly understood. Recently, Brendel et al. (2020) showed how spiking neuronal networks can efficiently represent a noise input signal. This "D_Model” successfully showed that spiking neural networks can recreate input signal representations and how these networks can be resilient to the loss of neurons. However, this model has multiple unphysiological characteristics, such as instantaneous firing and the lack of units related to physical values. The aim of the present study is to build upon the D_Model to add biological accuracy to it and study how information transfer is affected by biophysical parameters. We first modified the D_Model in the MATLAB environment to allow for the simultaneous firing of the neurons. Using our CxSystem2 simulator in a Python environment (Andalibi et al. 2019), we built a network replicating the one used in the D_Model. We quantified the information transfer of Leaky Integrate-and-Fire units that had identical physiological values for both inhibitory and excitatory units (Comrade class) as well as more biologically accurate physiological values (Bacon class). We used various information transfer metrics such as granger causality, transfer entropy, and reconstruction error to quantify the information transfer of the network. We examined the behaviour of the network while altering the values of the capacitance, synaptic delay, equilibrium potential, leak conductance, reset potential, and voltage threshold. Broad parameter searches showed that no single set of biophysical parameters maximised all information transfer metrics, but some ranges fully blocked information transfer by either saturating or stopping neuronal firing. This suggests theoretical boundaries on the possible electrophysiological values neurons can have. From narrow searches within electrophysiological ranges, we conclude that there is no single optimal set of physiological values for information transfer. We hypothesise that different neuronal types may specialise in transferring different aspects of information such as accuracy, efficiency, or to act as frequency filters.
  • Emre, Dusunceli (2022)
    The degree of neurogenesis in the adult hippocampal dentate gyrus (DG) is the center of the discussion in the field of adult neurogenesis. Although there is an on-going controversy, accumulating evidence suggests that the neural stem cells (NSCs) in the adult human DG are very few. The question remains open as to why there are so few NSCs in the adult human DG when compared with the rodent DG. In order to address these questions, it seems necessary to understand the developmental process of the NSCs in the adult human DG. In this thesis, the neural stem and progenitor cells in the fetal human DG are characterized. In addition to these findings, a semi-automatic method for counting and categorizing cells in their expressions of immunochemistry markers is developed.
  • Liiwand, Maj Britt (2022)
    Chronic stress has been linked to the pathogenesis of various disorders, such as generalized anxiety disorder, depression, and post-traumatic stress disorder (PTSD). Stress-induced hyperexcitability of the basolateral amygdala (BLA) has implications in anxiety-like behavior. Promising evidence points to the direction of GluK1 subunit containing kainate receptors (KARs) having a role in the modulation of GABAergic transmission in the lateral amygdala (LA). The aim of the present study was to investigate whether dysfunction of KARs contribute to stress-induced amygdala hyperexcitability and anxiogenesis in mice. Chronic restraint stress (CRS) is an animal model simulating chronic psychological stress. An in situ hybridization experiment was performed to investigate how CRS affects expression levels of GluK1 in the different neuronal populations in the LA. These data show that CRS leads to downregulation of GluK1 expression in the parvalbumin-positive (PV+) interneurons specifically. Patch clamp recordings of spontaneous inhibitory postsynaptic currents showed that CRS did not affect synaptic GABAergic transmission to the principal neurons in the LA. Lastly, conditional knock-out (cKO) mice that have the Grik1 gene knocked out selectively in the PV-expressing interneurons showed no change in anxiety-like behavior after CRS while their wild-type counterparts demonstrated an increase in anxiety-like behavior observable in the elevated plus maze test. Thus, ablation of GluK1 in PV+ interneurons affects the stress-induced anxiogenesis. Due to low number of animals, it cannot be confirmed yet whether the deletion leads to stress resilience or a phenotype where even regular handling is an aversive experience comparable to physical restraint. GluK1 KAR modulation of PV+ interneuron excitability and its susceptibility to stress-related alterations is only a recently discovered phenomenon, and even though this study provides some insight into the underlying mechanism, further research is needed. Systematic characterization of the mechanism could provide a novel tool for understanding and treating stress-related pathological anxiety, possibly helping patients suffering from anxiety disorders resistant to current treatments available.
  • Lindberg, Maiju (2023)
    As the most common mental disorder, anxiety disorders present a major burden to healthcare worldwide and a challenging problem to overcome for the ones suffering from it. Recently, researchers have started to recognize that the relationship between sleep and anxiety disorders is bidirectional; disturbed sleep is a potential risk factor for the progression of anxiety and anxiety can lead to sleep disturbances. However, the neural mechanisms underlying anxiety and sleep problems are still poorly recognized. In this study, we used a chronic sleep fragmentation (SF) paradigm to investigate how disturbed sleep alters anxiety-like behavior in mice and what are the potential underlying neuronal mechanisms. This model was chosen because we wanted to focus on a common form of disturbed sleep in humans rather than total sleep deprivation. We measured anxiety-like behavior in the light-dark box and open field tests right after the 2-week SF period and again after a week of recovery. Additionally, we performed immunohistochemical analysis to study prolonged cell activity (transcription factor ∆FosB), parvalbumin (PV) interneurons and perineuronal net (PNN) structures in the medial prefrontal cortex (mPFC) of the mice. Changes in mPFC activity and related brain areas are associated to anxiety in humans and anxiety-like behavior in rodents alike. Similarly, changes in PV interneurons and PNNs, that regulates PV cell function, are associated to anxiety-like behavior. However, PV interneurons and PNNs have not been previously studied in a setting that combines sleep fragmentation and anxiety-like behavior. We found that chronic SF increases anxiety-like behavior in female mice and that this effect persists at least for a week. Conversely, we did not observe significant increase in anxiety-like behavior in male mice. Both female and male mice showed decrease in ∆FosB in the mPFC suggesting that SF treated mice had lower overall levels of cell activity. Similarly, we found that SF treated mice had decreased PV interneuron intensity in both sexes which could indicate changes in the cell activity. However, the pattern of changes in the IHC results was not identical in males and females. Based on the IHC results, we suggest that SF affects neuronal processes in both sexes but the disparity in them could explain the difference in the behavioral effect. This thesis shows that disturbed sleep can lead to increased anxiety-like behavior in rodent models and recognizes potential targets to study the mechanisms behind the phenomena.
  • Lackman, Madeleine Helena (2022)
    Diabetes mellitus is an incurable disease caused by dysfunctional insulin signaling. The brown adipose tissue (BAT) serves as a hotspot for both lipid and glucose consumption and is thus an attractive target for treating metabolic diseases. Newly surfacing evidence suggest that the endothelial cells (ECs) lining the inner layer of vessels might regulate the morphology and function of adipose tissues. Several studies, including our own, suggest that the vessel density is negatively affected by metabolic diseases. As the BAT is an important organ for systemic lipid and glucose metabolism, and as the effects of metabolic diseases on BAT vessels are not adequately explored, I wanted to investigate how the BAT vasculature changes upon early time points of type 1 (T1D) and 2 (T2D) diabetes in this thesis work. To this end, I used mouse models with chemically induced T1D and genetic T2D and characterized these models with immunohistochemical analyses and immunoassays. To explore the transcriptomic landscapes of ECs and adipose stem cells (ASCs), I analyzed scRNAseq data of BAT stromal vascular fractions (SVF), focusing on changes in gene expression and EC-ASC interactions at a transcriptomic level. Also, by using a publicly available single-cell RNA sequencing (scRNAseq) dataset, I compared BAT SVF gene expression to complement the data resulting from our experiments. The results from this work reveal differential angiogenic responses in the T1D and T2D mouse models and open new avenues of research into how these different pathways are activated and how we can take advantage of these differences to treat diseases. All in all, this work will support the efforts in developing better options for future diabetes prevention, diagnosis, and care.
  • Gustafsson, Michelle (2023)
    Adolescent ill-being has in recent years become a prominent health concern globally. Ill-being during adolescence can have negative consequences for future health and wellbeing, as important patterns of health are formed during this time. This highlights the importance of early identification of risk factors and overarching patterns of mental and physical ill-being and arguments for early intervention during adolescence. The aim of this study was to identify risk factors and co-occurrence of subjective ill-being symptoms in the form of depressive symptoms and subjective health complaints. This study also examined whether the subjective ill-being of students was reflected in cortisol patterns in a naturalistic setting. This since stress has been identified as a key etiological factor in ill-being, through the damaging effect of prolonged exposure to elevated cortisol levels. By applying a novel measure of school atmosphere, the study also aimed to examine the potential protective role of the social atmosphere in school on subjective ill-being and cortisol levels. A total of 329 students from eleven Finnish-Swedish upper secondary schools participated in the cross-sectional study by answering a questionnaire. The salivary cortisol samples were collected from a subsample of the participants, with of a total of 209 participant that met the salivary sampling criteria applied in the study. The methodological framework for the statistical analysis of the study consisted of independent samples t-test, ANOVA, Pearson’s correlation, and multiple linear regression. The results showed a higher prevalence of ill-being in girls and second year students. A significant co-occurrence was found for the subjective ill-being measures of depressive symptom and subjective health concerns. The subjective ill-being was however not reflected in the daily cortisol patterns of students in a naturalistic setting. Furthermore, a positive school atmosphere was significantly negatively associated with subjective ill-being of student in the form of depressive symptoms and subjective health complaints. When controlling for covariates, the subjective meaning of school experienced by the students was identified as a significant protective factor against symptoms of ill-being. These findings identify students in need of additional support and highlights the need of applying an overarching view on student ill-being in future adolescent research. Since no associations was found between daily cortisol patterns and subjective ill-being this study contributes to the understanding of HPA axis in early disorder onset. This study also highlights the importance of subjective meaning in a school context and posits increasing the subjective meaning as a prominent strategy to decrease ill-being among Finnish-Swedish upper secondary school students. Further studies are however needed to assess the causality and to examine these relationships further.
  • Nedeczey-Ruzsák, Petra Dalma (2023)
    Normal sex differentiation depends largely on the healthy development of the bipotential gonad, which is identical in both sexes during early stages of embryonic development. Sex differentiation towards the female phenotype is initiated by the expression of pro-ovarian genes, among which Forkhead Box L2 (FOXL2) is an important regulator. Moreover, FOXL2 was found to be one of the genes most widely implicated in female disorders of sex development (DSD). However, there is a lack of understanding regarding its precise role during ovarian differentiation and development. In order to study the gene during early gonadal development, human embryonic stem cells (hESCs) were used as a model. An inducible FOXL2 activation line was generated in vitro, by applying the CRISPR/Cas9 technique in combination with the tetON and destabilized DHFR systems. The cells were also subjected to gonadal differentiation, based on a previously established protocol. The results showed that the establishment of the activation line was successful, and expression of FOXL2 could only be observed in cells that were treated with trimethoprim and doxycycline. Similar findings were observed in the differentiated activator cells, as again only the induced cells expressed FOXL2. On the other hand, both induced and non-induced differentiated cells showed expression of bipotential gonadal marker genes LHX9, EMX2, GATA4 and WT1. However, in the induced cells a lower relative expression of these markers could be observed. Therefore it seems that relative expression of bipotential gonadal markers was affected by FOXL2 activation. The expression of female gonadal marker genes RSPO1, FSHR, WNT4, AMH and FST was not influenced by FOXL2 activation during gonadal differentiation, as most of the markers showed similar levels of expression in both induced and non-induced cells. Therefore further research needs to be conducted to determine optimal time point of FOXL2 activation during differentiation. Nevertheless, an in vitro model could be generated, which could help in the future to further study the role of FOXL2 in gonadal differentiation, and to better understand pathological mechanisms underlying female DSDs.
  • Rappe, Anna (2021)
    Aging is the progressive accumulation of cellular dysfunction, stress and inflammation. The mitochondrial network plays a central role in the maintenance of cellular homeostasis, with a growing body of evidence assigning dysfunctional regulation of this network as cause or effect of age-related diseases including metabolic disorders, neuropathies, various forms of cancer and neurodegenerative diseases. Neuronal sensitivity to changes in energy supply and metabolic homeostasis make neurons especially susceptible to alterations in the mitochondrial network. Mitophagy, a specified form of autophagy, is the selective degradation and quality control mechanism of mitochondria by engulfment and fusion with acidic endolysosomal compartments of the cell. Mitophagy has been extensively characterised in cultured cells and short-lived model organisms. However, our understanding of physiological mitophagy during mammalian aging is unknown. This study utilizes mito-QC mitophagy reporter mice that enable in vivo detection and monitoring of mitochondrial turnover due to the distinct physicochemical properties of the tandem GFP-mCherry reporter. Using cohort groups of young and aged reporter mice, age-dependent alterations of mitophagy were quantified in the cerebellum and the outer nuclear layer (ONL) of the retina. Specific autophagy and mitophagy markers were used to assess the longitudinal alterations in the mitophagic landscape. Images of fixed brain tissue sections were attained by high-speed spinning disc confocal microscopy for the quantitative and histological analysis. This study characterises the longitudinal alterations of mitophagy in distinct regions of the central nervous system (CNS) of mitophagy reporter mice, demonstrating tissue-specific alterations in mitochondrial turnover throughout physiological time. Åldrande kan definieras som den successiva ackumuleringen av cellulär dysfunktion, stress och inflammation. I upprätthållandet av cellens funktioner och homeostas har det mitokondriella nätverket en central roll. Omfattande forskning visar att åldersrelaterade sjukdomar såsom neuropati, ämnesomsättningssjukdomar, olika cancerformer samt neurodegenerativa sjukdomar föranleds av mitokondriell dysfunktion. Neuroner är beroende av oavbruten energitillförsel och upprätthållen metabolisk homeostas, vilket gör dem speciellt mottagliga för förändringar i det mitokondriella nätverket. Mitofagi är en selektiv form av autofagi som degenererar och kvalitetskontrollerar mitokondrier genom att leverera dem till lysosomer där de bryts ned av hydrolytiska enzymer. Den aktuella kunskapen inom regleringen av och mekanismerna bakom mitofagi baserar sig på gedigen forskning av kortlivade organismer och cellkulturer. Däremot är vår kunskap inom åldrandets inverkan på mitofagi i däggdjur begränsad. I denna studie används musmodellen mito-QC vars rapportörgen består av ett binärt GFP-mCherry-komplex som besitter olika fysikaliska och kemikaliska egenskaper, vilket möjliggör upptäckt och analys av mitofagi in vivo. En kvantitativ jämförelse av mitofagi i unga och åldrande möss genomfördes i vävnadssnitt av cerebellum och av det yttre nukleära lagret av retinan. Specifika autofagi- och mitofagimarkörer användes för att utvärdera de longitudinella förändringarna i mitokondriell degenerering. Bilder för kvantitativ och histologisk analys erhölls med höghastighets spinning-disk-konfokalmikroskop. Denna forskning karaktäriserar de longitudinella förändringarna av mitofagi i definierade regioner av det centrala nervsystemet i musmodellen mito-QC och presenterar vävnadsspecifika förändringar i degenereringen av mitokondrier under åldrandets framskridande.
  • Blom, Sonja (2022)
    Pain is a subjective feeling often difficult to interpret or study and thus, pain of those unable to communicate their pain is difficult to recognize. According to the new definition of pain by IASP (Raja et al 2020), verbal description is only one of the many behaviours that can be used to express pain, and the inability to communicate pain does not negate the possibility of experiencing it. This addition to the definition points out that non-human animals, too, even if they cannot express it in words, are capable of both experiencing and communicating pain. Can we as humans interpret a state of pain in an animal in a trustworthy way – and in a manner that would be respectful and non-invasive to the animal? Infrared thermography (IRT) is a technology based on using infrared radiation instead of normal light to form images. These images can be used to quantify the surface temperature of an object with high resolution. The intensity of the radiation emitted by the object being imaged depends on the surface temperature and for this reason thermal imaging enables detecting and measuring changes of surface temperature. Pain and stress might manifest physiologically as activation of the autonomic nervous system, which in turn might result in changes in surface temperatures of the body. These changes might be detectable with a thermal camera. If we could establish a link between certain intricate temperature changes of the head area to certain type of activation of the sympathetic nervous system resulting from pain, thermal imaging could have the potential to detect this. In this study I investigated if there were detectable temperature changes in animal patients before and after a standard examination conducted to each patient admitted to the Wildlife Hospital of Helsinki Zoo, where my data was gathered. Another question was whether the patients that had pain differed in their temperature changes as compared to other patients. The question at the heart of my research was whether there would be a change in peripheral facial temperatures of patients before and after the examination. Another question was whether thermal patterns would be different for pain- and non-pain patients. I found that for some parameters, the temperature differences between pain- and non-pain patients were indeed different, for example the crown temperature of birds seemed to change with examination for patients without pain but not for patients with pain. A more prominent finding was that temperatures decrease across many parameters after an examination as compared to prior to it, across all or many patient groups. My research does not univocally show that thermal imaging could be used to detect pain; rather it affirms the thought that the measurement of changes in peripheral temperatures could be a potential window to non-invasively detect some changes of activation of the sympathetic nervous system in animals.
  • Mäkinen, Hilla (2023)
    Morphological features are considered as markers of microglial functionality, and they show regional heterogeneity in the brain. Recently the sleep-wake cycle was shown to affect microglial morphology in mice and correlate with cortical sleep slow wave activity (SWA). Microglial sizes and ramification increased during the dark period and decreased during the light period in cerebral areas associated with SWA, suggesting that neuronal activation could be affecting microglial morphology through SWA. I studied microglia in the hindbrain areas with and without functional connection to SWA to further investigate the association between SWA and alterations in morphology, and to investigate if there are differences in microglial morphology and their diurnal alterations in brain regions other than those commonly investigated. I examined three hindbrain areas (cerebellar cortex (CC), deep cerebellar nucleus (DCN) and medial vestibular nucleus (MVN)) and somatosensory cortex (SC) of mice (n=15) at two timepoints: 6 hours after the light onset (high SWA) and offset (low SWA). My aims were to answer if there are morphological differences in microglia between 1) the four brain areas at both timepoints and 2) between the two timepoints in each brain area. My hypotheses were that CC and DCN which have functional connections to cortical SWA, would show similar diurnal morphology alterations as demonstrated in the cerebral areas, and MVN that has no known cortical SWA connection, would lack significant alterations. As microglia are heterogenous throughout brain, I expected microglia to differ between different brain areas, especially the hindbrain and the SC. I found that microglial morphologies significantly differed between the hindbrain and the cortex, while the hindbrain areas were more similar in morphology. Moreover, the brain areas demonstrated diurnal morphology alterations of microglia with varying extent: CC and DCN microglial morphology did not correlate with SWA as clearly as SC did, and interestingly, morphological features of MVN microglia showed a pattern opposite to other areas, microglia being larger during the light period than the dark period. These results highlight the importance of the diurnal time to microglial morphology and the heterogeneity of microglia between different brain regions.
  • Pihl, Enni-Eveliina (2023)
    Microglia, the resident macrophage-like glial cells of the central nervous system (CNS), form the first line of defense against pathogens in the brain, and regulate both innate and adaptive immunity. Any abnormalities in their microenvironment lead to microglial activation, characterized by alterations in their gene expression, morphology, and functional behavior. Once activated, microglia respond to CNS injury and inflammation by, e.g., migrating to the site of damage, releasing pro-inflammatory cytokines, as well as phagocyting cell debris and pathogens. Prolonged activation of microglia expressing pro-inflammatory phenotypes can lead to exacerbated CNS damage. Hence, limiting CNS inflammation by stimulating microglial polarization towards their pro-resolving phenotypes would be of great clinical relevance. The research of our laboratory focuses on CNS injury and repair, as well as finding novel therapies for ischemic stroke. Specialized pro-resolving mediators (SPMs) derived from essential fatty acids have been proposed to offer a potential therapeutic approach for ischemic stroke via promoting resolution of post-stroke inflammation. Previous studies have revealed the ability of SPMs to induce a transformation of macrophages, the immune cells strongly resembling microglia, towards their anti-inflammatory phenotypes. The aim of this study was therefore to assess whether SPMs have similar effects on BV2 microglia, specifically on their lipopolysaccharide (LPS)-induced production of pro-inflammatory cytokines, tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6). In addition to assessing the cytokine levels, our aim was to determine the optimal conditions for studying the effects of SPMs on microglial migration. In the present study, the levels of TNF-α and IL-6 were determined by specific ELISAs, and the transwell assay was used to measure microglial migration. Resolvins E1 (RvE1) and D1 (RvD1), as well as protectin D1 (PD1) and 15-epimer of lipoxin A4 (15-epi-LXA4) were all associated with decreased levels of TNF-α and IL-6, with RvE1 having the most potential as a resolving agent. In addition, we observed that serum starvation notably decreases the release of IL-6 and affects microglial migration. Overall, our results support the idea that SPMs could provide a novel therapeutic strategy for stroke therapy as they contribute to the resolution of CNS inflammation.
  • Hein, Emil (2022)
    Poor quality of sleep and the following health problems affecting daily life are in many cases caused by cognitive and physiological arousal resulted from a stressful event. Such stress detrimental to sleep may originate from psychosocial factors such as feelings of shame and social rejection. Our goal was to elucidate the impact of acute psychosocial stress occurring before bedtime on sleep macrostructure and the early night non-rapid eye movement sleep (NREMS). In addition, virtual reality solutions are emerging as options to simulate social threats in laboratory environments. We studied whether a virtual reality variation of a public speaking scenario was sufficient in producing a physiological stress response evident in heart rate variability (HRV) parameters. We compared two experimental groups of healthy young adults (n=34), which differed in the scenario completed within the virtual reality. The stress condition involved a public speaking simulation in front of an attentive virtual audience whereas the control condition involved listening to a neutral presentation in the same but empty virtual seminar room. The participants’ physiological responses were measured with a HRV monitor for 38 hours and the quality of sleep during the laboratory night following stress induction with electroencephalography (EEG). The examined early sleep period was divided into two separate cycles of NREMS, whose results were juxtaposed. For analysing frequency band activity during sleep, we processed the data from EEG with Fourier transformation to yield power spectral density values i.e. frequency activity values. Comparing the two conditions, we observed a distinct effect of stress both during the virtual public speaking scenario and in the subsequent early sleep in the participants from the stress group. We found a significant increase in heart rate and rising fluctuations in the LF/HF (HRV power spectrum high frequency/low frequency) ratio around the stress task period contrasting the results of the control condition, reflecting increased sympathetic tone in the stress group. In the following night, the percentage of stage N3 sleep significantly increased at the cost of N2 sleep during the first NREMS cycle in the stress condition, but this effect resolved in the second NREMS cycle where group differences were absent. As a key finding, the stress group exhibited higher beta frequency activity in proportion to delta activity throughout both cycles and sleep stages. This effect was significantly magnified in N3 sleep where the delta/beta activity ratio decreased in the stress group from cycle 1 to 2, indicating worsening quality of sleep as the night progressed. We reflected our results through a homeostatic point of view, where the increased high frequency beta activity at sleep onset and early sleep in the stress group might explain their increased N3 sleep duration in the first NREMS cycle. A stronger affinity for the important N3 sleep may be a sleep protective mechanism to counter the stress induced abnormally high frequency EEG activity at sleep onset and early sleep to ensure the restorative benefits of slow-wave activity.
  • Seiffert, Nina (2021)
    An increasing number of people are diagnosed with depression. One possible reason for the development of depression is faulty wiring and information processing in certain neural networks (network hypothesis) in the central nervous system. It has been shown that antidepressant drugs (ADs) can induce a juvenile-like plasticity state in the brain (iPlasticity) comparable to the plastic state of critical periods during development. iPlasticity enables the rewiring of neuronal networks in combination with environmental stimuli. At the molecular level, the binding of brain-derived neurotrophic factor (BDNF) to its high-affinity receptor tropomyosin kinase receptor B (TRKB) leads to TRKB dimerization and activation, triggering a downstream signalling cascade promoting brain plasticity. Activation of the TRKB signalling cascade is triggered by neuronal activity as well as AD treatment. Recent findings demonstrate that classical as well as rapid-onset ADs bind directly to the transmembrane domain of TRKB, leading to increased translocation of intracellularly stored TRKB to the plasma membrane and enhanced BDNF binding. Cholesterol, a sterol lipid known to regulate TRKB signalling, has been found to ensure optimal TRKB-BDNF signalling by changing the TRKB dimers’ relative orientation when altering the membrane thickness. A point mutation of TRKB tyrosine 433 to phenylalanine (TRKB.Y433F) has been found to hinder TRKB dimerization. Molecular dynamic simulations reveal that other membrane lipids are likely to participate in AD binding to TRKB. The aim of this thesis was to investigate whether lipid and drug compound treatments affect TRKB dimerization in Neuro2A cells expressing TRKB. Furthermore, we assessed whether the Y433F mutation modulates TRKB dimerization in such treatments. Protein fragment complementation assay (PCA) was used as in vitro protein-protein interaction assay to quantify dimerization of overexpressed TRKB carrying two split luciferase reporter proteins. Additionally, to avoid variability caused by transient transfection and be able to test large compound libraries, the establishment of a stably TRKB-expressing N2A cell line was initiated. The results show that lipid compounds, such as Allopregnanolone, as well as ADs, such as Imipramine and (2R,6R)-Hydroxynorketamine, increased TRKB dimerization in vitro in a dose-dependent manner within 40 minutes. The increase was more pronounced in the TRKB WT-expressing cells. This indicates that the compounds tested here may be directly interacting with TRKB, facilitating dimerization. Moreover, data seem to confirm previous research on the less effective TRKB.Y433F mutation. While stable expression of TRKB carrying one of the luciferase reporter proteins was successfully achieved in a monoclonal cell line, the amount of protein expressed seems to require further optimization before utilising it for PCA. In conclusion, lipid and AD treatments can induce an increase in TRKB dimerization in a dose-dependent fashion. Further investigations are needed to determine where the compounds bind and by which mechanisms they exert their effects on TRKB. Furthermore, the work on the stable cell line will be completed to avoid variability of transient transfection in the future.
  • Kuutti, Mirjami (2022)
    In recent years, psychedelics have shown promise in the treatment of conditions like depression and addiction. The therapeutic effects of psychedelics have been linked to their ability to increase plasticity in the brain, an effect that has also been seen for antidepressants. Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family, which has an important role in the development of the nervous system, as well as promotion of neuronal survival and differentiation during adulthood. BDNF, through its receptor TrkB, has been implicated in antidepressant action, and BDNF-TrkB signalling is involved in many aspects of plasticity. Recently, antidepressants have been reported to bind directly to TrkB, and through this binding mediate their plasticity-enhancing, as well as behavioural effects. Psychedelics have been shown to increase structural and functional plasticity, but the mechanisms behind these effects are not fully understood. For example, the serotonergic receptor 5-HT2A is known to be behind the acute hallucinogenic effects of psychedelics, but its role in plasticity is still debated. The aim of this study was to investigate the mechanisms of LSD-induced plasticity. The dimerization of TrkB was examined after LSD treatment in the protein-fragment complementation assay (PCA). Phosphorylation of TrkB signalling markers mTOR and ERK, which have known effects on plasticity, was assessed in Western blot, and the total expression of BDNF was examined with the enzyme-linked immunosorbent assay (ELISA). The timeline of the effects was investigated, and the involvement of 5-HT2A in TrkB dimerization and the phosphorylation of ERK was assessed by combining LSD treatment with the 5-HT2A antagonist M100907. Dimerization was also assessed in a TrkB mutant (Y433F) that has previously been shown to disrupt antidepressant effects on plasticity. These experiments showed that LSD treatment increased TrkB dimerization as well as phosphorylation of mTOR and ERK. The Y433F mutation interfered with LSD-induced TrkB dimerization, but the effects of LSD on TrkB dimerization or ERK phosphorylation were not blocked by M100907. Together, these data suggest that 5-HT2A is not involved in LSD-induced promotion of TrkB dimerization or ERK phosphorylation. The increases in phosphorylation and dimerization were found to be most robust after a 1 h LSD treatment, however an increase in BDNF expression was seen in cortical neuron cultures only after a 24 h treatment with LSD. The results reported in this study support the view that 5-HT2A might not be needed for the plasticity-inducing effects of psychedelics. If this is true, the development of treatments that target plasticity without hallucinatory effects could be possible. Overall, this research provides insight into the mechanisms of LSD-induced plasticity and offers new and interesting directions for future research in the field.
  • Moog, Maia (2022)
    Catastrophic childhood epilepsies are characterized by persistent seizures and are frequently associated with cognitive and developmental impairments. Many, approximately 30%, of these epilepsies are rare genetic disorders that do not have effective therapeutic options. The bench to drug process is lengthy and expensive, and thus it is critical to find more affordable drug screening options. Zebrafish are an ideal model organism for screening studies as they share considerable (70%) genetic similarities with humans and are cheap to maintain with efficient breeding capabilities. In the present study, 37 zebrafish lines were screened for epileptic brain activity to identify high priority genes for future pharmacology studies. Each zebrafish line, generated by CRISPR-Cas9 represents a single gene loss of function mutation associated with 3 epilepsy based on genome wide association studies. Larval zebrafish were screened for spontaneous seizure activity using electrophysiological assays. The following 8 genes were significantly associated with spontaneous seizure activity in zebrafish: EEF1A, ARX, GRIN1, GABRB3, PNPO, STRADA, SCN1A, and STXBP1. There is now an open-source database for all 37 zebrafish lines, which contains sequencing information, survival curves, behavioral profiles, and electrophysiological data. The findings reveal novel target genes for future drug development and discovery. Future work is needed to explore whether zebrafish also model co-morbidities commonly seen in human patients with epilepsy.