Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by discipline "Physiology and Neuroscience"

Sort by: Order: Results:

  • Andersson, Oliver (2020)
    This study focused on the spectral sensitivity of two Norwegian lake populations of opossum shrimp (Mysis relicta), with a common implantation history and a temporal separation of about 50 years. Previous findings have indicated a difference in the absorption maximum (λmax) between sea and lake populations of Nordic mysids that have been separated about 9 000 years. Between the population groups, the spectral sensitivity correlates to the Wavelength of Maximal Transmission (WLMT) in the habitats. This may be considered a form of adaptive tuning. It is not known if the species-specific mechanism is based on chromophore shift or opsin modification or a combination of both, neither is the timescale of the adaption well understood. The intent was to determine λmax of both populations, what chromophore(s) they use and possible variations of the opsin gene. By comparison to spectrometric data of the habitats, the study aimed to broaden the insight into the mentioned unknowns. The light conditions of the lakes were determined by spectrometry down to depths of three and five meters. As predicted a positive, lake-bound correlation between the attenuation coefficient (k) and WMLT was found. Single-rhabdom microspectrophotometry (MSP) was used to determine λmax of the visual pigment in situ. Absorbance spectra were analysed by manual fitting to mathematical pigment templates and by script-based automation. Neither the chromophore nor differences in λmax could be determined, due to a small sample size that limited the statistical power of the results. The opsin genes from both populations were sequenced. No differences expected to have an effect on spectral sensitivity were found. Spectral tuning could not be demonstrated to have occurred in the populations due to the limited sample size. Nor did the results give support for any new findings on the mechanism or the time scale of spectral tuning among mysids. To answer the proposed questions of the study, additional sampling of both populations is needed.
  • Pitkänen, Stina (2018)
    The arylhydrocarbon receptor (AHR) is known for its xenobiotic role. In the last decades we have realized it has an important role even in normal physiology. Earlier studies have shown different circadian behavior in mice and rats when AHR is activated with the environmental toxoid TCDD. Also, AHR knock-out (AHRKO) mice have shown to adapt quicker to new lighting conditions. The aim of this study was to chart AHRs role on the circadian behavior in rats, by comparing daily eating and drinking habits under normal lighting condition for 7 days and for 7 days after a 12-hour light shift. Tissue samples to be used in continuing studies were taken after the 14 days long follow up. These studies will chart how the circadian timekeeping genes are expressed in the central (suprachiasmatic nucleus) and periphery (liver) cells in AHRKO rats after an adaptation to phase shift compared to wild type rats. This way the study will provide information that will help us understand the role of AHR in different species regarding behavior and in continuing studies gene expression. In our study no differences in drinking and eating activity could be seen between AHRKO and wild type rats. Both groups adapted to new lighting conditions equally fast.
  • Fredrikson, Linda (2019)
    The consumption of omega (n-) 3 polyunsaturated fatty acids (PUFA) from fish has been associated with lower rates of cardiovascular diseases with one mechanism being lowering LDL cholesterol levels in blood. When incorporated into LDL particle n-3 PUFAs can modify the lipid composition and reduce atherogenicity of the particle, e.g. by influencing inflammatory processes. The effects of n-3 PUFA of plant origin are less studied. This study investigated the effects of Camelina sativa oil (CSO), a rich source of alpha-linolenic acid (ALA), on lipid species of human LDL including phosphatidylcholines (PC), lysophosphatidylcholines (LPC), sphingomyelin (SM), triacylglycerols (TAG) and cholesterol esters (CE). A total of 38 subjects with a history of impaired fasting glucose, were randomly divided into two groups; CSO (ALA 10 g/day) and the control group (limited fish and ALA intake) for 12 weeks. Blood samples were collected from the subjects at the beginning and at the end of the experiment after 12 weeks. LDL particles were isolated from blood and the lipids were analyzed by mass spectrometry. The CSO affected more the LDL core lipids (TAG and CE) than lipid species of the shell (PC, LPC, SM). CSO is high in ALA and linoleic acid (LA). Thus, the diet reduced mole fractions of lipid species containing saturated acyl chains while acyl chains in the core lipids with ALA, LA and EPA, that is formed in the body from ALA, were increased. Based on the results, having CSO in the diet changed the LDL particle lipid composition in a favorable direction for cardiovascular health.
  • Karvonen, Eira (2020)
    APECED (Autoimmune-Polyendocrinopathy-Candidiasis-Ectodermal-Dystrophy) is a severe, multiorgan autoimmune disease caused by mutations in the AIRE (autoimmune regulator) gene. APECED is a rare disease, however in Finland the frequency is significantly high (1:25 000) and APECED belongs to the ‘Finnish Disease Heritage’. The most common mutation worldwide is the so-called Finn-major mutation R257X that results in a truncation of the AIRE protein, which disrupts the indispensable functions of AIRE. Immune reactions towards body’s own components are typically prevented with various central and peripheral immune tolerance mechanisms. AIRE is essential for the proper development of central and peripheral tolerance and the absence of functional AIRE leads to a loss of immune tolerance and various autoimmune manifestations. Recent studies have suggested that AIRE also has functions in stem cells and actively contributes to the regulation network of pluripotency. Currently, the development of induced pluripotent stem cell (iPSC) technology has opened opportunities for precision medicine and for defining the cure for genetic diseases, such as APECED. The ultimate objective of our research group is to examine whether APECED could be cured via autologous, gene-corrected cell transplants with the use of induced pluripotent stem cells (iPSCs). As a requirement for such later therapeutic use and iPSC differentiation, the APECED patient-derived iPS cells needed to be characterized in detail. To assess, whether AIRE R257X mutation, present in APECED patients’ iPSCs, would cause defects in their stemness properties, the expression of AIRE and classical stem cell markers were examined with qPCR and immunocytochemistry and compared to healthy control iPSCs. The iPSC cells were also treated with spontaneous differentiation -inducing dimethyl sulfoxide (DMSO) to study, whether AIRE R257X mutation would affect the spontaneous differentiation of iPS cells. To further investigate the stemness and early developmental phase properties of APECED patient derived iPSCs, self-aggregated embryoid bodies (EBs) were generated and cultured. Immunocytochemistry was used to examine whether APECED EBs differ in stemness, proliferation or apoptosis from healthy individual’s EBs. The comparative Ct method (ΔΔCt) i.e. fold change revealed that APECED iPSC clones expressed all the classical stem cell markers similarly to healthy control iPSCs. DMSO treatment reduced the expression of stem cell markers in both healthy and APECED-derived iPSCs. The immunostaining results of iPSCs were consistent with the qPCR analysis. The overall growth properties as well as the immunocytochemical assays of stemness, proliferation and apoptosis markers did not show any significant difference between the APECED patient and healthy control derived EBs. Together the results indicate that the R257X mutation of the APECED patients does not affect stem cell properties such as stem cell marker expression and colony or the EB formation of the iPSCs. The results are contrary to previous studies in mice demonstrating the interspecific difference between mouse and human and denoting the importance of human samples completing the studies with animal models. As the APECED patient derived iPSCs did not exhibit any defects in their stemness properties, the later iPS differentiation and therapeutic use could be accomplished without hindrance. However, future work is still needed, as the small sample size in this preliminary test might introduce some biases to the results and hindered a relevant statistical analysis. Nevertheless, this thesis project was the first time APECED patient-derived iPSCs were characterized and has provided new information about the effect of AIRE mutation in APECED patient derived iPSCs.
  • Moliner, Rafael (2019)
    Classical and rapid-acting antidepressant drugs have been shown to reinstate juvenile-like plasticity in the adult brain, allowing mature neuronal networks to rewire in an environmentally-driven/activity-dependent process. Indeed, antidepressant drugs gradually increase expression of brain-derived neurotrophic factor (BDNF) and can rapidly activate signaling of its high-affinity receptor TRKB. However, the exact mechanism of action underlying drug-induced restoration of juvenile-like plasticity remains poorly understood. In this study we first characterized acute effects of classical and rapid-acting antidepressant drugs on the interaction between TRKB and postsynaptic density (PSD) proteins PSD-93 and PSD-95 in vitro. PSD proteins constitute the core of synaptic complexes by anchoring receptors, ion channels, adhesion proteins and various signaling molecules, and are also involved in protein transport and cell surface localization. PSD proteins have in common their role as key regulators of synaptic structure and function, although PSD-93 and PSD-95 are associated with different functions during development and have opposing effects on the state of plasticity in individual synapses and neurons. Secondly, we investigated changes in mobility of TRKB in dendritic structures in response to treatment with antidepressant drugs in vitro. We found that antidepressant drugs decrease anchoring of TRKB with PSD-93 and PSD-95, and can rapidly increase TRKB turnover in dendritic spines. Our results contribute to the mechanistic model explaining drug-induced restoration of juvenile-like neuronal plasticity, and may provide a common basis for the effects of antidepressant drugs.
  • Jenkins, Cherie (2020)
    Reptiles have long been studied in search of the mechanisms behind neuronal regeneration. This thesis delves into the regenerative areas of two emerging model species to the field of regenerative research: Pogona vitticeps (bearded dragon) and Pantherophis guttatus (corn snake). This fluorescent immunohistochemical study maps out and compares the constitutive proliferative zones in these two species to better define the focus of future comparative neurodegenerative experiments. A BrdU pulse chase experiment in conjunction with PCNA reveals proliferative zones in the lateral ventricular ependyma of both species. Stem cell niches were found in the ependymal lining adjacent to the medial cortex and dorsal ventricular ridge in both species, however, the nucleus sphericus ependyma was an active proliferative zone only in Pantherophis. Imaging of further markers in this study support the findings of the pulse chase experiment. High levels of the stem cell marker Sox2 was found in lateral ventricular ependymal cells in both species. The glial marker GFAP reveals a highly ordered array of radial glia in the cortical areas of Pogona, which is significantly reduced or absent in Pantherophis. And lastly the neuronal marker HU was found in the same cells that were BrdU positive and had migrated a short distance from the proliferative zones, which shows that the proliferative areas in the lateral ventricular lining do indeed produce neurons. The BrdU and PCNA marked cells were quantified in both species, and a brief comparison between the species showed that Pogona had a significantly higher number and concentration of proliferative cells in the proliferative zones than Pantherophis. Scattered BrdU positive cells that were neither neuronal nor positive for any other marker were also found scattered throughout the parenchyma of Pogona, and these cells remain uncharacterized. Differences between these two species are not surprising, as lizards are known to have better regenerative capabilities than snakes, however, more comparative research between these species is needed to gain further insight into the mechanisms behind their contrasting regenerative capabilities.
  • Sirola, Roosa (2013)
    Visual working memory (VWM) maintains information for future usage. Several studies show that the cortical oscillations in the γ-frequency band (from 30 to 120 Hz) are modulated by the VWM performance. However, less is known about the cortical sources underlying the modulation of these oscillations in VWM. To address this question, we recorded human neuronal activity with magneto- and electroencephalography (M/EEG) during a delayed-matching-to-sample VWM task with three different task conditions, within which participants were instructed to focus on different object features in turn. In addition, anatomical data was acquired with magnetic resonance imaging for source modeling purposes. We then estimated the cortical amplitude dynamics across frequencies from three to 90 Hz during the VWM retention period for these three different conditions. We found that the amplitudes of the γ –frequency band oscillations were strengthened in the occipito-temporal cortical areas during the VWM for shapes but not for color or spatial locations. These data suggest that γ –band oscillations are fundamental in VWM, especially for visual stimuli requiring perceptual feature binding. Furthermore, cortical γ –band oscillations were found to be load dependently strengthened in the frontal cortex, where the central executive and attention associated processes are believed to take place. These data support the previous hypotheses stating that γ –band oscillations contribute to the maintenance of object representations in VWM.
  • Puskarjov, Martin (2010)
    The Cl- and HCO3- electrochemical gradients across the plasma membrane dictate the electrical consequences of GABAA receptor (GABAAR) function and thereby play a significant role in neuronal GABA-mediated signalling. In adult pyramidal neurons, responses to GABA are maintained hyperpolarizing mainly by the action of K-Cl cotransporter isoform 2 (KCC2). KCC2 acts as a Cl- extrusion mechanism responsible for setting the intracellular Cl- concentration below the electrochemical equilibrium, a necessary condition for hyperpolarizing inhibition mediated by GABAARs. Recent evidence suggests that plasmalemmal KCC2 has a very high rate of turnover, pointing to a novel role for changes in KCC2 expression in diverse manifestations of neuronal plasticity. Some studies indicate that rapid down-regulation of KCC2 may be a general early response involved in various kinds of neuronal trauma. In this work, whole-cell patch-clamp was used to examine KCC2 function under a pharmacologically induced arrest of protein synthesis in living hippocampal brain slices from rat. The stability of KCC2 function was quantitatively assessed on the basis of the dendritic Cl- extrusion capacity in the presence of protein synthesis inhibitors cycloheximide and emetine. The parameter used for assessing extrusion capacity was a somato-dendritic Cl- gradient, which was imposed by a somatic Cl- load that resulted in a gradient of EGABA (ΔEGABA). The results of this study show that under general protein synthesis inhibitor-induced arrest of translation, KCC2 function persists unperturbed for at least 4 hours and hence that the cessation of mRNA translation cannot rapidly induce downregulation of KCC2-mediated Cl- extrusion. This finding precludes the use of protein synthesis inhibitors for rapid modulation of KCC2 function. Indirectly, the results presented here imply that the levels of KCC2 under pathophysiological conditions are primarily determined by the degradation rate and not by de novo synthesis.
  • Ollonen, Joni (2020)
    The skull represents the most highly diversified and evolutionarily adapted anatomical aspect of metazoans, and its development and evolution have been a major driving force in the expansion of vertebrates. The evolution of skull and lower jaw bones have led to the adaptive radiation of jawed vertebrates, and skull tissues have changed rapidly over time and were finely tuned to meet functional and ecological demands with tremendous precision. Because of the long-lasting interest in conventional animal models, there is no general genetic or developmental model of skull evolution and diversity in vertebrates. Squamate reptiles represent the best model to study those aspects because of their key basal phylogenetic position within amniotes (i.e., mammals, birds, reptiles) and their exceptionally high levels of morphological variation (including their kinetic skulls). In particular, their lower jaw bones display tremendous variation. In order to assess this variation and the ecological and developmental factors connected to it, several methods from different fields of biology have to be used. In this study, morphometric, embryology and developmental approaches are used to investigate the ecological and developmental factors associated with the diversification of lower jaw bones in snakes and lizards. The shape diversity of squamate lower jaw bones was approached in a systematic way, using geometric morphometrics. Embryological methods were used to compare the embryonic stage of available squamate model animals at oviposition and to assess the order of ossification of embryo with earliest developmental stage at oviposition (bearded dragon, Pogona vitticeps). In addition, expression of major conserved candidate genes at different stages of lower jaw development (pharyngeal arches, mesenchyme patterning, ossification) were assessed in this species. The results indicate that the lower jaw bones of snakes versus lizards but also of fossorial squamates versus other habitats are significantly different. Heterochrony was also detected at both early stages (pharyngeal arche development at oviposition) and at the onset of ossification in lizards and snakes. Coherent with that, alterations in the expression pattern of Dlx genes in pharyngeal arches were observed in bearded dragon in comparison to earlier studies with mice, while other conserved markers of skeletogenesis were rather conserved. This analysis of the genotype and phenotype map of the reptilian skull provides some new insights into the development, origin and divergence of vertebrate tissues. The results will establish a good basis for future studies involving comparative developmental biology of bearded dragon. Future studies will offer excellent new opportunities to link craniofacial morphology, genetics/genomics and development to both ecological adaptation and evolutionary biology.
  • Hirvonen, Jonni (2013)
    Tässä pro gradu -tutkielmassa on tarkasteltu aivosähkö- ja aivomagneettikäyrien amplitudien vaihteluiden vastaavuussuhteita koehenkilön suoriutumiseen audiovisuaalisten ärsykkeiden tarkkaavaisuustehtävissä. Aikaisemmista tutkimuksista tiedetään, että koehenkilön osumatarkkuus ei pysy vakiona koko tehtävän ajan, vaan on monesti jaksottunut valppauden ja herpaantumisen jaksoihin. Lisäksi osumatarkkuus koko kokeen ajalta on alhaisempi kuin lyhyen kalibraatiojakson ajalta mitattuna. Tämän intuitiiviseltä tuntuvan keskittymiskyvyn järkkymisen taustalla on esitetty olevan henkilön introspektiiviset ja mielenvaelteluun liittyvät kognitiiviset toiminnot. Ennen tätä tutkimusta on jäänyt kuitenkin osoittamatta osumatarkkuuden ailahtelun yhteys aivokuoren hermostollisen aktiivisuuden pitkällä ajalla autokorreloiviin muutoksiin lähdemallintamisella. Tämän pro gradun tutkimustulokset osoittavat, että näiden kahden lajin välillä on olemassa merkittävä korrelaatioyhteys. Lisäksi lepovaiheen aivotoiminnasta modaliteettispesifeillä tarkkaavaisuus- ja oletustilan verkoston alueilla voidaan ennustaa psykofyysisen suoriutumisen vaihteluja jatkuvan audiovisuaalisen ärsykekynnyksen tarkkaavaisuustehtävän aikana. Keskittymiskyvyn vaihtelun muutoksia hermostollisella tasolla ja näitä mahdollisesti ilmentäviä käyttäytymisen ailahteluja psykofyysisinä parametreinä, kuten osumatarkkuutena ja reaktionopeutena, voidaan luonnehtia skaalauslakianalyysilla. Ilmiön skaalaton käyttäytyminen heijastelee monimutkaisen järjestelmän taipumusta luoda sisäisiä vastaavuussuhteita eli autokorrelaatioita, jotka heikkenevät hitaammin ja ulottuvat kauemmaksi ajassa ja/tai paikassa kuin mitä alla piilevistä mekanismeista voidaan suoraan ennustaa. On havaittu, että osumatarkkuuden jaksottuminen ja spontaani aivotoiminta noudattavat potenssilain skaalauskäyttäytymistä ajan suhteen. Psykofyysisen ja hermostollisen skaalauslain mukaisen käyttäytymisen kvantifioimiseksi tässä opinnäytetyössä on käytetty vaihtelun ikkunallista autokorrelaatioanalyysiä, DFA:ta. DFA paljastaa ilmiön sisällä olevien peräkkäisten tapahtumien autokorrelaatioiden kestävyyden tarkasteluvälin kasvaessa. Skaalausluvut eli DFA-eksponentit on johdettu tässä kokeessa jatkuvan audiovisuaalisen ärsykekynnyksen tarkkaavaisuustehtävän ja levon aikana rekisteröidyistä aivosähkö- ja aivomagneettikäyräsignaalien verhokäyrästä sekä psykofyysisen osuma/huti -binäärisekvenssistä rakennetusta keinotekoisesta satunnaiskulun kaltaisesta käyrästä. Jatkuvat ärsykekynnystehtävät soveltuvat hyvin tarkkaavaisuuden top-down mekanismien tutkimiseen, koska heikoista, vain juuri ja juuri havaintokyvyn säteellä olevista ärsykkeistä seuraa verraten heikko bottom-up hermostovaste. Näin keskittymiskykyyn vaikuttavat top-down säätelymekanismit kuten motivaatio, päämäärät tai mielenvaeltelu eli spontaanilta vaikuttava aivotoiminta edustuu selkeämmin aivosähkö- ja -magneettikäyrissä. Aivokuoren kokonaisvaltaisen skaalautumisen lisäksi ollaan kiinnostuneita psykofyysisten ja hermostollisten vastaavuussuhteiden jakaumamallista tietyille aivoalueille. Mitattujen hermostollisten signaalien paikantaminen tarkalleen tietyille aivokuoren alueille aiheuttaa käänteisen ongelman, joka on ratkaistu tässä MNE -lähdemallintamisella. Lähdemallintamisen algoritmit tuottavat todennäköisimmän mallin aivokuoren alueista, joiden aktiivisuudella voidaan selittää mitatut MEEG signaalit. Mallintaminen on työn kriittinen vaihe, koska sillä yhdistetään neuroanatominen tieto fysiologisen ja psykofyysisen tiedon kanssa. Yksilötason data on käsitelty lopuksi ryhmätasolla tilastollisin menetelmin korrelaatiotulosten merkittävyyksien arvioimiseksi.
  • Sundman, Elina (2020)
    Hypothyroidism affected 337 370 people in Finland in 2019. The hypothalamus-pituitary negative feedback loop is used in the diagnostics of hypothyroidism. TSH, a pituitary hormone, is the most used diagnostic tool with the free thyroxine (T4) in a supporting role. L-T4 has been the main treatment option, since the discovery of peripheral deiodination. Biochemical and clinical euthyroidism is the aim of L-T4 therapy. There are no nationwide official treatment guidelines for hypothyroidism in Finland. The Finnish Endocrine Society has published their recommended guidelines in 2019. Studies have shown that 5–15 % of levothyroxine treated patients continue to report symptoms when they are biochemically euthyroid. The symptoms consist of typical symptoms of hypothyroidism: fatigue, cognitive symptoms, depression, anxiety and weight gain. The molecular basis of the symptoms is not yet known. These symptoms have notbeen studied in Finnish population. The aim of this study was to find out what symptoms levothyroxine treated patients report on Finnish social media support groups and view the current treatment of hypothyroidism and guidelines of treatment. This study was conducted by surveying patient-reported information from social media hypothyroidism related support groups. The posts were divided into two groups: hypothyreotic and athyreotic. The biochemical data and symptoms were collected from 137 posts in the athyreotic group and 191 in the hypothyreotic group. Only posts with TSH under or within the refence range and free T4 within the reference range wereincluded in the study. The results show that patients reported symptoms in 74 % of the posts viewed. 81 % of patients reported symptoms in the hypothyroidism group and 64.2 % in the athyreotic group. The most reported symptom in both groups was fatigue. Symptoms were reported within the normal TSH range (0.5-4 mU/l) and below the normal range (<0.5 mU/l). In asymptomatic patients the median TSH was 0.38 mU/l in the athyreotic group and 0.54 mU/l in the hypothyreotic group. Free T4 seems to be a little higher in the asymptomatic patients in both groups. 16.6-25 % the patients reported that they had had Free T3 measured. Free T3 seem to be higher in relation to free T4 in the athyreotic group that reported having no symptoms. L-T4 is the recommended treatment modality for hypothyroidism. Other options are synthetic combination treatment with L-T4 + L-T3 and desiccated thyroid extract (DTE).This study supports the view that hypothyroidism patients can have symptoms on levothyroxine treatment
  • Harmoinen, Katri (2019)
    New Zealand is an isolated landmass laying in the Southwest Pacific waters, far away from any major islands or continents. It was the last major landmass to be colonized by people, discovered by the first Polynesian explorers around a thousand years ago. Historically, New Zealand lacked all native mammals (apart from three species of bats) and so has developed a plethora of bird species and other endemic wildlife. The absence of mammalian predators, combined with the continuous isolation for millions of years, has led the evolution of some very unique and charismatic species. One of these species is the iconic symbol of New Zealand – the kiwi (Apteryx spp). The biggest challenge to the New Zealand wildlife has been the introduction of mammalian species to the New Zealand ecosystem. There are 25 species of introduced mammals in New Zealand today that are regarded as pests. The devastation caused by these species is the main cause for the dramatic decline of the endemic New Zealand wildlife, including the iconic kiwi. Nationally, kiwi continue to decline by more than 2% annually and there are estimates of the species going extinct from the wild within 50 years. Since the first more permanent human settlement, more than 50% of the New Zealand breeding birds have gone extinct. In this thesis, the relation between kiwi and introduced mammalian species around the township of Whakatāne, New Zealand, was studied. During summer 2018-2019, three out of eight monitored kiwi chicks were predated by a suspected mustelid/mustelids and DNA swabs were obtained from the bite sites. Volunteer pest trappers were then asked to bring in all their catches in an attempt to catch the individual/individuals responsible for the predations. Molecular tools including microsatellites were used to create ID profiles in an attempt to match the profiles to those obtained from the kiwi chicks. In the second part of the study, the stoats’ stomachs were analysed as part of a diet study. A new, kiwi specific DNA probe was trialled and the remaining stomach contents were sequenced for other native wildlife species. Out of the three predated kiwi chicks, all of them were confirmed to be stoat predations. Unfortunately, none of the stoat ID profiles obtained matched the profile of the kiwi chick Ranui who was the only chick a good micro-satellite profile was obtained for. This confirmed that the stoat/stoats responsible for the predation of Ranui was not caught as part of this study. In the diet part of this thesis, we trialled the kiwi specific probe but could not identify any kiwi DNA in the stoat stomach contents. The DNA sequencing however revealed five other species: tomtit (lat. Petroica macrocephala, 100%), common chaffinch (lat. Frigilla coelebs, 100%), tui (lat. Prosthemadera novaseelandiae, 96%), European hare (lat. Lepus europaeus,100%) and copper skink (lat. Cyclodina aenea, 100%). These findings shed new light on the extent introduced mammalian species contribute to the species loss taking place in the New Zealand forests today. The use of molecular techniques and tools in conservation offers an often faster, cost-efficient and more reliable alternative to traditional monitoring methods of introduced species. The rapid development of these tools has seen New Zealand taking critical steps towards one day becoming predator free. The ambitious goal to rid New Zealand of target introduced species (mustelids, possums and rats) by year 2050 (Predator Free 2050), has been compared as the New Zealand equivalent of putting the man on the moon.
  • Lankinen, Tuuli (2020)
    Our hearing perception is based on the ability to discriminate mechanical sound waves and to amplify and transduce them into electrical stimuli.This function is based on the complex cellular organization of the cochlea, the hearing organ. The sensory epithelium in the organ of Corti spirals along the cochlear duct in a tonotopic arrangement: every sound frequency elicits the strongest response at allocation along this duct. Sound stimulus is detected by three rows of outer hair cells (OHCs) which amplify- and tone-discriminate the sound stimulus, and by one row of inner hair cells (IHCs), which transduce the mechanical stimulus into electric impulses. Basal regions of the cochlea detect high- frequency sounds and apical regions detect low- frequency sounds. The complexity and sensitivity of the cochlea is linked with its vulnerability to various traumas. Most kinds of damage to the mammalian hair cells is irreversible, because these cells are not capable of regeneration. Hearing impairment has many etiologies. Common to them is that damage is permanent and no pharmacotherapy is available. Hearing impairment is often a disabling condition and it has vast societal consequences. The number of hearing impaired people is constantly increasing and the WHO has estimated that 10% of the world`s population will suffer from disabling hearing loss in 2050. Mesencephalic astrocyte- derived neurotrophic factor (MANF) is an unconventional, ER-resident protein that promotes ER- homeostasis. It has been associated with cytoprotective functions in many neurodegenerative disease- models and shown to promote recovery after ischemic trauma. MANF expression has been previously found in many cell-types in the cochlea, including OHCs and IHCs. Its deficiency in a mouse model led to upregulation of ER-stress markers and a robust, tonotopic base –to apex gradient loss of outer hair cells and severe hearing loss. This study examines the role of MANF in noise-induced trauma in the hair cells of the cochlea. In a conditionally inactivated (Manf -/- cKO) mouse model in the C57BL/6J – background, where Manf has been inactivated from most of the cochlear cells, I studied, if Manf -deficiency sensitizes the cells to noise-induced cell death in two age-groups. I also examined the basic and noise- induced MANF expression, using two mouse- strains, C57BL/6J and CBA/Ca. I also examined OHC stereociliary bundle morphology to find out if noise induces morphological changes in Manf cKO-mice that differ from noise-exposed C57BL/6j wild type mice. This study found that OHCs have a low MANF- expression, whereas in IHCs the expression is strong. MANF is expressed in a base- to apex gradient in the OHCs of the two mouse-strains examined, in a uniform pattern, that correlates with vulnerability, implicating that low levels of MANF predispose basal OHCs to vulnerability. MANF expression in the IHCs was non-gradiental. Noise did not induce upregulation, as was expected, but instead noise induced downregulation of MANF in the basal region of the OHCs by an unknown mechanism in both mouse-strains.This suggests that noise-induced trauma induces ER dyshomeostasis, possibly independent of ER stress response pathways ,unfold protein response (UPR). This study also demonstrates that MANF deficiency sensitizes the OHCs to noise- induced trauma, resulting in more elevated OHC loss and hearing thresholds. This sensitization is mainly caused by a progressive degenerative changes seen in the OHC stereociliary bundles of Manf cKO-mice, and is associated with more severe noise-induced hearing loss. The results of my study suggest that MANF has an important, yet unknown, protective role in noise-induced trauma in OHCs. These results support the possible role of MANF as a therapeutic agent in a noise-induced trauma.
  • Tentke, Annika (2014)
    This project was about the molecular mechanisms involved in the generation of eicosanoids in human mast cells with particular emphasis on lipid bodies as a source and/or site of lipid mediator biogenesis. The cells to be used are isolated from human peripheral blood provided by Finnish Red Cross Blood Transfusion Service and collected from healthy donors. Human mast cells are found in connective tissue. They contain granules filled with histamine, heparine and proteases. Human mast cells are potent effector cells in host-defense mechanisms of innate immunity, including inflammatory diseases such as atherosclerosis. Activation of mast cells by different stimuli triggers the release of a huge range of mediators, including de-novo synthesized eicosanoids, which are highly biologically active lipid mediators. The major eicosanoid released by activated mast cells is prostanoid prostaglandin D2 (PGD2). The aim of this project was to find out whether mast cell lipid bodies are the cellular compartments of PGD2 synthesis, what are the enzymes involved in AA liberation from TGs, and whether TG-derived AA is a source for PGD2 production. The enzymes of special interest were hormone sensitive lipase (HSL) and adipose triglyceride lipase (ATGL). We were also interested about hematopoietic prostaglandin D synthase (HPGDS), the key enzyme in the production of D and J series of prostanoids. Methods used in this pro gradu work include siRNA transfections, RNA isolation, cDNA synthesis, qPCR, immunoblotting, ELISA and conventional fluorescence microscopy. Immediate increase in the amount of PGD2 released from mast cells sensitized with human IgE (1 µg/ml) and activated by polyclonal rabbit anti-human IgE (1 µg/ml) was observed. The increase was most prominent after one hour of activation, and slowly decreased to basal levels at 48 h post-activation. siRNA transfection affected the amount of enzyme DNA in mast cells and the amount of PGD2 released. HSL, ATGL and HSL+ATGL double knockdowns all reduced the amount of PGD2 released in acute (5 to 30 minutes) term activation compared to control cells. However, no significant changes were observed in the mRNA expression levels of ATGL, HSL, CGI-58, HPGDS or COX-1 under mast cell activation. The only significant changes in mRNA expression levels were observed with COX-2. However, the relative expression of HPGDS increased in IgE treated mast cells compared to control treated cells and the expression was even greater in mast cells treated with αIgE also. Both ATGL and HPGDS were recognized throughout the cytosolic area in the non-activated Ctrl cells. Although HPGDS located also in the circumference of mast cells, no clear localization of HPGDS was observed in the circumference of mast cell lipid droplets. The experiments carried out at the Wihuri Research Institute, including those presented here, have established that, in addition to phospholipids, the triglycerides present in mast cell lipid droplet core are also an important source of eicosanoids, and that also ATGL and HSL, not just cPLA, can release arachidonic acid for eicosanoid production. The ramifications of this study include the possibility that arachidonic acid release from triglycerides for the formation of eicosanoids could take an indirect or a direct route to supply precursors for cellular eicosanoid biosynthesis. The key is the pathway of AA release. In the direct pathway, AA is released from LD TGs by ATGL or HSL and this free AA is used for the generation of PGs by either COX-1 or COX-2, depending on the status of the cell. In the indirect pathway, AA is liberated from LD TGs by ATGL or HSL and then further re-esterified into phospholipids from where AA is then finally released by cPLA2 for the generation of eicosanoids.
  • Hannukainen, Riikka (2013)
    Työssä tutkittiin rasvahappojen kerrostumista itämerennorpan (Phoca hispida botnica) traanissa ja tämän merkitystä rasvahappokoostumukseen perustuvassa ravintokohteiden arvioinnissa. Vertaamalla sisätraanin rasvahappokoostumusta plasman ja maksan rasvahappokoostumuksiin pyrittiin selvittämään siirtyvätkö jotkut tietyt ravinnon rasvahapot toisia tehokkaammin traanin sisäosiin, eli heijastelevatko jotkut sisätraanin rasvahapoista ravinnon rasvahappokoostumusta toisia paremmin. Itämerennorpan traanin eri kerrosten rasvahappokoostumusta verrattiin myös sen tärkeimmän ravintokalan, Itämeren silakan rasvahappokoostumukseen, jotta nähtäisiin minkä kerroksen koostumus muistuttaa eniten ravinnon rasvahappokoostumusta. Vertailun vuoksi työssä tutkittiin myös makeassa vedessä elävän saimaannorpan (Phoca hispida saimensis) traanin ja maksan rasvahappokoostumuksia. Lisäksi määritettiin plasma- ja maksanäytteiden kuljettaman tai lyhytaikaisesti varastoiman varastorasvan määrät. Tutkimuksessa käytettiin Perämerellä ammutuista itämerennorpista kerättyjä traani-, maksa- ja plasmanäytteitä, sekä kuolleina löydetyistä saimaannorpista kerättyjä traani- ja maksanäytteitä. Kudosnäytteiden rasvahappokoostumusten määritys tehtiin analysoimalla niistä valmistettuja rasvahappojen metyyliesteriseoksia kaasukromatografisesti (GC). Lipidiluokkakoostumukset puolestaan määritettiin korkean erotuskyvyn ohutlevykromatografialla (HPTLC). Analyysien tuloksia käsiteltiin tilastollisesti pääkomponenttianalyysin (PCA) ja sen tuloksia ohjatusti luokittelevan menetelmän (SIMCA) avulla, regressioanalyysillä, sekä laskemalla koostumusten euklidisia etäisyyksiä eri näytteiden välillä. Jokaisen yksilön traanille luotiin vertikaalinen rasvahappoprofiili toisiaan nahasta lihakseen seuraavien osanäytteiden rasvahappokoostumuksen perusteella. Itämerennorpan traanin kerrostuneisuutta tutkittiin nyt ensimmäistä kertaa ja sen havaittiin olevan rakenteeltaan kerrostunut, kuten on havaittu myös aiemmin tutkituilla kahdella norpan alalajilla. Aiemmista tutkimustuloksista poiketen keskitraani ei kuitenkaan eronnut rasvahappokoostumukseltaan merkitsevästi muista traanikerroksista. Sisä- ja ulkotraanin väliset rasvahappokoostumuksen erot olivat sen sijaan merkitseviä. Traanikerroksista sisätraani muistutti eniten itämerennorpan tärkeän saalislajin, silakan, rasvahappokoostumusta. Itämerennorpan kudosten rasvahappokoostumus erosi selvästi saimaannorpan kudosten rasvahappokoostumuksista. Näiden kahden alalajin ulkotraanit kuitenkin muistuttivat toisiaan rasvahappokoostumukseltaan sisätraaneja enemmän, mikä viittaa siihen, että niiden ulkotraanin koostumusta säätelevät samankaltaiset lämmönsäätelyyn liittyvät geneettisesti määräytyvät tekijät. Rasvahappokoostumusten alalajikohtaisista eroista huolimatta traanin rasvahappojen kerrostumistapa oli samanlainen molemmilla tutkituista alalajeista. Traanin vertikaaliset rasvahappoprofiilit olivat kuitenkin hyvin yksilöllisiä. Useiden rasvahappojen suhteelliset määrät plasmassa ja sisätraanissa korreloivat tilastollisesti merkitsevästi keskenään. Tämä tulos vahvistaa oletuksen, että viimeaikaisella ravinnolla on vaikutusta erityisesti sisätraanin rasvahappokoostumukseen ja, että sen perusteella voidaan saada tietoa eläimen ravinnosta. On kuitenkin huomattava, että tietyt sisätraanin rasvahapot ilmentävät ravinnon rasvahappokoostumusta toisia paremmin. Vaikka traanien vertikaaliset rasvahappoprofiilit antavat mitä ilmeisimmin yksilökohtaista tietoa eläinten ravinnosta ja aineenvaihdunnasta, niitä ei ole pystytty tulkitsemaan aiemmissa tutkimuksissa kovinkaan syvällisesti. Nämä tulokset voivatkin osaltaan auttaa tulkitsemaan traanin vertikaalisia rasvahappoprofiileja tulevaisuudessa. Saatuja tuloksia voidaan lisäksi hyödyntää myös hylkeiden ravintokohteiden arvioinnissa käytettävien näytteenottoprotokollien suunnitteluun ja kehittämiseen.
  • Saarnisalo, Ona (2019)
    Lack of Ectodysplasin (EDA), caused by a mutated Eda gene, leads to a syndrome called hypohidrotic ectodermal dysplasia (XLHED) with defects in ectodermal organs such as teeth, hair and sweat glands. The molar teeth of Eda knock out (Eda KO) mice are absolutely and relatively smaller and have fewer cusps than the wild type (WT) molar teeth. In the absence of the EDA protein, the receptor of the EDA signalling pathway (EDAR) remains functional, and therefore EDA-protein therapy can rescue the development of ectodermal organs. The aim of this study was to determine EDA sensitivity windows and to describe the Edar expression pattern in developing mouse lower molars. Eda KO mouse skulls treated with EDA for 24 hours at different stages of development were imaged using x-ray microtomography. The response was studied by analysing the cusp patterns and size proportions of lower molars. In situ hybridisation was used to detect the Edar expression in the developing Eda KO and WT molars at different stages. The results show that molars are sensitive to EDA at the early stages of crown patterning, at the time when Edar is expressed in the primary enamel knot and the secondary enamel knots. The Edar expression pattern suggests that EDA signalling regulates molar size and cusp development through these signalling centres. EDA-treatment during a sensitivity window enhances the growth of the EDA sensitive molar, thereby breaking the previously reported inhibitory cascade –rule. The results of this study provide information for optimising the EDA therapy for XLHED patients.
  • Rydgren, Emilie (2018)
    Kainate receptors (KARs) are glutamate receptors that modulate neurotransmission and neuronal excitability. They assemble from five subunits (GRIK1-5 or GluK1-5) present at both pre- and postsynaptic membranes. KAR function is regulated by neuropilin and tolloid-like (NETO) proteins, which also regulate postsynaptic GRIK2 abundance. Some KAR subunit gene variants associate with psychiatric disorders. Moreover, Grik1, Grik2 and Grik4 knock-out (KO) mice display changes in anxiety- and fear-related behaviours. In previous work, Neto2 KO mice expressed higher fear and impaired fear extinction in the fear conditioning paradigm. We hypothesised that this phenotype could be due to reduced KAR subunit abundance in fear-related brain regions, i.e. ventral hippocampus, amygdala and medial prefrontal cortex (mPFC). We specifically investigated GRIK2/3 and GRIK5 levels in the subcellular synaptosomal (SYN) fraction using western blot. We did not observe any difference between genotypes in any of the brain regions. However, our statistical power may have been insufficient, particularly for amygdala and mPFC. Also, an effect on synaptic KAR subunit abundance might be specific to either pre- or postsynaptic compartment, and thus more difficult to detect in SYN fractions. Alternatively, NETO2 absence may affect KAR actions instead of their subunit levels in fear-related brain regions, which could be examined through electrophysiological recordings. Ultimately, unravelling how a molecular system without NETO2 gives rise to fear behaviour in mice may lead to a better understanding of fear-related disorders in human and to new therapeutic strategies.
  • Pousi, Suvi Päivikki (2015)
    Neurotrophic factors are essential for the development of the central nervous system. By signalling through Trk receptors, they have multiple effects on for example the survival of neurons, growth of axons and dendrites and stability of synapses. BDNF, which signals through TrkB receptor, is a neurotrophic factor with an important role in the formation and stabilization of glutamatergic synapses. It is also known to be released in an activity dependent manner. The mechanisms by which BDNF and TrkB signalling regulate synaptic transmission depend on the type and developmental stage of the synapse, and they are not well known. The electrical activity of immature networks consists of intrinsic activity with intermittent bursts of synchronous activity, which is believed to fine tune the synaptic connectivity through Hebbian plasticity mechanisms, which are stabilized by homeostatic mechanisms. Homeostatic regulation can be especially important during the development of the neural network while the glutamatergic transmisson is very labile. Little is known of the signalling routes that participate in the homeostatic plasticity during the development of the neural network. The aim of the thesis was to investigate how the long-term inhibition of TrkB signalling affects the glutamatergic transmission and the homeostatic regulation in area CA3 of neonatal hippocampus by using gene manipulated TrkBF616A mouse strain. The TrkB receptors in the TrkBF616A strain are modified so that they can be blocked with a kinase inhibitor (1NMPP1). In part of the work C57BL/6 -mice were used as control. In addition to the acute measurements the hippocampal slices were incubated in control conditions and with inhibitory drugs (TTX and 1NMPP1) for 15 to 20 hours, after which miniature excitatory postsynaptic currents (mEPSCs) were recorded with whole-cell patch clamp from area CA3 pyramidal cells. The research shows that continuous TrkB signalling is essential for the maintenance of AMPA receptor mediated synaptic transmission in CA3 area of neonatal hippocampus in TrkBF616A mice. Long-term inhibition of TrkB signalling decreases the amplitude of mEPSCs. TrkB-signalling seems to be needed also for the homeostatic response caused by network activity deprivation. The results also indicate that the inhibition of TrkB signalling increases the frequency of mEPSCs, possibly by a homeostatic mechanism. However, the results also show that the TrkBF616A mice strain might differ from wild type mice and the kinase inhibitor 1NMPP1 might have non-specific effects that are not currently known, so more extensive research on the matter is still needed to confirm the results.
  • Huovelin, Suvi (2019)
    Citizen science is a research method in which data collection, analysis or other stages of research is distributed to a large number of volunteers. Citizen science enables collection of large-scale data. In addition, in few cases Citizen science has been integrated into formal school education. It has been found to attract students' interest in the subject and research and to teach students about scientific research. However, the real benefits of citizen science for schools have been just scarcely studied. This study explored the experiences of middle school and high school students on the Helsinki Urban Rat Project (Kaupunkirottatutkimus). The research questions were: (1) How do the middle school and high school students who participated in the Urban Rat Project experience citizen science as part of biology teaching? (2.) How do the students who participated in the Urban Rat Project feel about urban rats and how does the Project affect students’ perception of rats? The data was collected by group theme interviews from middle school and high school students who participated in the City Rat Project. The data consisted of nine recorded interviews with a total of 29 interviewees. The interviews were transcribed and analyzed by content analysis. The Urban Rat Project aroused situational interest towards urban rats and research project. Main factors for aroused interest were novelty and specialty of the project, the involvement created by hands-on activities and the meaningfulness created by contextualism of an authentic research. Learning experiences were categorized by Bloom’s revised taxonomy and the results revealed a number of knowledge types and cognitive process categories, suggesting that the project developed a diverse range of students' thinking. Students were able to develop deeper research skills, critically explore research and its outcomes, and learn about practical challenges and constraints of scientific research. Urban rats gave rise to both negative, positive and neutral feelings among students. The negative emotions were caused by a variety of causes, such as the appearance and behavior of rats, culture created attitudes and students own experiences. Positive feelings were caused by interest toward rats and good experiences with pets. The knowledge learned in the study about urban rats generally reduced negative feelings and in one case aroused them, but many interviewees also felt that the study had no effect on their attitude towards rats, because interaction with rats was not concrete enough during the project and the students were disappointed that they did not see rats or rat footprints. The authentic research context of citizen science such as Urban Rat Project can increase meaningfulness to studying biology, which is not necessarily achieved by other teaching methods and may teach the realities of scientific research better than traditional practical work. In addition, citizen science can provide knowledge and nature experiences that allow learners to reflect on their relationship with nature. In order to achieve nature-related learning goals of the school education, citizen science projects should pay particular attention to the concreteness of the interaction between learners and nature and to the students' experiences in nature during citizen science.