Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by discipline "Pharmaceutical Chemistry"

Sort by: Order: Results:

  • Saarelainen, Taija (2010)
    Steroid hormones are involved in many physiological functions such as stress response and the maintenance of salt-water balance and pregnancy. Concentrations of steroids in the body fluids are generally very low (below ng/ml). Steroid hormones are metabolically associated and changes in mutual concentration levels of different steroids may signify a disease. Methods that allow the measurement of various steroids simultaneously are of great importance in investigating the role of steroid metabolism for example in formation of cancer. The aim of this work was to develop a sensitive and selective method for simultaneous quantification of 16 steroids in plasma. Nano liguid chromatography-microchip electrospray ionization-tandem mass spectrometry (nanoLC-µESI-MS/MS) was used in order to achieve good sensitivity. C18 enrichment column and separation column, and an electrospray tip were integrated onto the chip that was used in this work. Mass spectrometric parameters were optimized by using a MS calibration and diagnostic chip. It was noticed that the structure of steroids plays an important role on how the compound behave in electrospray ionization. Steroids with 4,5-ene-3-one-structure had much lower limits of detection than steroids without conjugated double bonds (0,075-0,5 ng/ml and 5-25 ng/ml respectively). The chosen sample pretreatment method to extract the steroids from plasma did not work properly, because it was able to extract only a third of the compound's real concentration. Analysis of some compounds was also difficult because of the background noise coming from plasma. The method development was therefore decided to continue with eight steroids that were well detectable and had 4,5-ene-3-one-structure. The limits of detection were 0,075-0,5 ng/ml in biological matrix for these compounds. Eight knock out and seven wild type mouse plasma samples were analyzed using the validated method. The method was able to quantify aldosterone, corticosterone and androstenedione. Developed method did not meet all the aims of this work. Derivatizated compounds, different equipment or totally new method should be used in order to accomplish the aims.
  • Kallio, Arttu (2014)
    Cytochrome P450 (CYP) -enzymes are one of the most important enzymes in the metabolism of xenobiotics. Because many xenobiotics are metabolized with each other by the same CYP-enzymes, it is possible that metabolic interactions will take place. These interactions can be the inhibition or induction of the metabolism of another xenobiotic. The interaction can be harmful e.g. when it causes an accumulation of a toxic metabolite or when it inhibits the metabolism of an active drug substance. The aim of this study was to develop a quantitative method for determining metabolic interactions between drugs and environmental chemicals in human liver microsome (HLM) incubations. HLMs contain high concentrations of CYP-enzymes, enabling the use of CYP-model reactions for observing interactions. The model reactions chosen for this study were O-deethylation of phenacetin (CYP1A2), 7-hydroxylation of coumarin (CYP2A6), 4'-hydroxylation of diclofenac (CYP2C9), 1'-hydroxylation of bufuralol (CYP2D6) and 6β-hydroxylation of testosterone (CYP3A4). Michaelis-Menten constants (Km) and maximal enzymatic activities (Vmax) were determined for each model reaction. The suitability of the model reactions for inhibition studies was assessed with specific inhibitors. The quantitative method was developed for an ultra-high performance liquid chormatograph (UPLC) and for a quadrupole time of flight mass spectrometer (QTOF). Samples were ionized with electrospray ionization (ESI) using positive mode. Device parameters were the same for all the metabolites. The analytical method validation was partly performed according to ICH (International Conference on Harmonisation) guidelines. A sufficient linearity (R2>0,99) and specificity was achieved for the quantitative method. The achieved limits of quantitation (LOQ) were low enough (1-120 nM) for quantitation of the small concentrations of the metabolites formed in the inhibition assays. The measurement reproducibility and the reproducibility and accuracy of the method did not fulfill the acceptance criteria for all the metabolites. Improvement of the results should be tried by e.g. exploring different device parameters. 1'-hydroxydiclofenac was found likely to degrade in the matrix solution because of the acidic conditions, making the reliability of the results poor for this metabolite. The Km value obtained for coumarin differed markedly from literature values, which can be due to a too long incubation time. Therefore, incubation conditions should be optimized for this model reaction in coming studies. The Km values obtained for the model reactions of CYP1A2, CYP2D6 and CYP3A4 were similar to those found in literature. Also the IC50 values were quite well within the range of values reported in literature for the inhibitors of the above mentioned model reactions. The effects of four different polymers, F68, F127, Tetronic 1307 and polyvinyl alcohol (PVA) on the enzyme activities were also studied, at a concentration of 1 mg/ml. In principal, at this concentration the polymers did not cause significant changes in the enzyme activities, although inhibition of the CYP2C9 could have been significant. However, the reliability of CYP2C9 model reaction was found to be poor with the used method. In the future this developed method should be further validated, and the incubation conditions for the model reaction of CYP2A6 should be optimized. After this, the IC50 values for the polymers could be studied to get more reliable information about their potential CYP-inhibition properties.
  • Hossi, Heidi (2016)
    The abuse of drugs is monitored by different authorities and health care. World Anti-Doping Agency (WADA) prohibits the use of doping substances and methods in- and/or out-of-competition. WADA has created strict instructions for Anti-Doping laboratories for analyzing different substances from biological samples. The aim of this study was to develop liquid chromatographic-mass spectrometric (LC-MS/MS) screening analysis for the detection in urine of drugs of abuse. The basis of study was 20 different substances which had different molecular weights, logP and pH values. The purpose was to create the basis of the method where is easy to add new analytes in further studies. Almost all substances chosen in this study were doping substances and the guidelines for the method were created by WADA. The sample pretreatment was pursued to be as generic as possible for plenitude of analytes and easy to perform. The sample pretreatment included two liquid-liquid extraction steps and enzymatic hydrolysis. The LC-MS/MS method worked well for many analytes with some exceptions. Some analytes didn't fit for the sample pretreatment and some didn't give strong enough signal in desired detection level. The gradient of LC-method can be limiting factor when adding new analytes to the method. Especially very lipophilic and polar analytes may cause difficulties. Carry over caused some problems in analyses. As a result it may lead to new sample treatment and LC-MSanalysis for the same batch.
  • Takala, Anna (2012)
    Neurosteroids are steroids which are active in the central nervous system. They have many biological and physiological functions in human body. Fluctuations of the neurosteroid concentrations are related to many diseases such as depression, schizophrenia and epilepsy. Neurosteroid levels are measured to understand their role in brain function and human behavior. The aim of the work was to develop a gas chromatographic-atmospheric pressure fotoionization-tandem mass spectrometric (GC-APPI-MS/MS) method for analyzing 19 neurosteroids and their metabolites in urine. Neurosteroids are excreted in urine mainly as conjugates, so they have to be hydrolyzed before analysis. Sample purification is done by liquid-liquid extraction and the analytes are subsequently derivatized to enhance their volatility. Because widely used β-glucuronidase/arylsulfatase-enzyme from Helix pomatia oxidases 3β-hydroxy-5-ene and 3β-hydroxy-5α-reduced steroids, we decided to use β-glucuronidase from Escherichia coli and acid hydrolysis instead of H. pomatia. The quantification of the total neurosteroid concentration in urine was challenging because β-glucuronidase enzyme from E. coli did not hydrolyze glucuronides completely and acid hydrolysis deconjugated also glucuronides in addition to sulfate conjugates. In addition the internal standard d4-allopregnanolone was noticed to be impure and degrade during acid hydrolysis. The limits of detection were reasonably low for the method (2 pg/ml-1 ng/ml). The retention times of the analyte peaks were very repeatable (RSD 0,06-0,11%) and the repeatability of the method was acceptable for all compounds (RSD < 27%). Urine samples from two males and two females were analyzed with the preliminary validated method. We could determine estimated concentrations for dehydroepiandrosterone, dihydrotestosterone, androstenedione, testosterone, estrone, β-estradiol, estriol, 5α-tetrahydrodeoxocorticosterone, cortisone, corticosterone and hydrocortisone. The developed method did not meet all the aims of this work. The method needs further validation and more exact investigation about the effect of the selected hydrolysis method on intact steroids. Also the internal standard should be changed to some other compound, preferably a non-deuterated one.
  • Heikkilä, Aki (2015)
    Lead molecule search is the first part of drug design. This process can be done using computerized docking of ligands into target proteins. Usually this requires expensive software and powerful computer systems specifically made for the process. There are however some programs that are available for free and can be run on home computers. The purpose of this Master's Thesis was to see how these free software can be used for the task of docking and also to create a method or a guideline for such work. Protein kinase C (PKC), a popular target for drug design, was chosen as a target of inhibitor design. PKC is part of a larger family of serine/threonine kinases and formed of 10 isoforms all with different effects on cellular functions. The large amount of related kinases and the similarities in their sequences make finding selective inhibitors a difficult process. Homology models of all PKC isoforms in three known conformations solved by x-ray diffraction (pdb: 1XJD, 2I0E and 3A8W) were created using Modeller. Into these models a set of possible ligands from the free database of molecules ZINC was docked using Autodock Vina utilizing a script created for docking multiple ligands into multiple targets. The dockings resulted in some interesting results. Six molecules were recognized as possible lead molecules for further research. None of these molecules had any patents or previous results of protein kinase inhibition connected to them. The most interesting result was the finding that coluracetam, a nootropic drug of the racetam family, might be a protein kinase inhibitor. Racetams are usually considered drugs that lead to PKC activation. It has been proposed that inhibitors may prolong the lifetime of kinases in the cells leading to increased activity in the long term. In our opinion coluracetam might prove to be a good tool for studying the complex way kinase activity is modulated. The methods and scripts used in this work will be released for free use.
  • Flemmich, Paul (2015)
    There are dozens of bromotyrosine alkaloids extracted from the marine sponge Pseudoceratina purpurea. Bromotyrosines have for example antibacterial, antiviral and antitumor activity in vitro and therefore bromotyrosines are potential drug lead molecules. By far, bromotyrosines have been extracted from different marine sponges of the Verongida order for the use in biological activity research. Collecting marine sponges by scuba diving is neither fast nor ecological and therefore finding an effective synthesis strategy is vital so that the research could continue. One new bromotyrosine, purpurealidin I, was found from the marine sponge Pseudoceratina purpurea in the four year (2010-2014) Marex-project. The aim of this thesis was to synthesize the compound purpurealidin I and its derivatives. Synthesized compounds were tested against hepatitis C and chikungunya viruses. It is important to find new potent drug molecules, because approximately 350 000-500 000 people die from hepatitis C and there is no curative medication for the chikungunya. Purpurealidin I is synthesized from tyrosine and tyramine parts, which will be put together to form an amide bond in the final step of the synthesis. The synthesis of purpurealidin I was not completed during the Master's thesis. However there were two purpurealidin I derivatives and four purpurealidin I tyramine part derivatives that were successfully synthesized. One of the compounds is purpurealidin E, which can be extracted from the sponge Pseudoceratina purpurea. The t-Boc derivative of purpurealidin E was examined against hepatitis C and chikungunya and the compound showed moderate activity against hepatitis C virus, but it wasn't active against chikungunya virus. The original plan to synthesize purpurealidin I is possible, although some reactions and purification of crude products need to be optimized in order to get better yields. For the future research derivatives of the t-Boc derivative of purpurealidin E should be synthesized and studied against hepatitis C virus.
  • Vesterinen, Johanna (2012)
    Pyrazoles are five-membered nitrogen containing heterocycles, whose derivatives can be widely used in medicinal chemistry. One of the most common ways to produce pyrazoles is 1,3-dipolar cycloaddition, where the dipole containing heteroatom is reacting with a dipolarophile, and forming a cycloadduct. Among others, mesoionic sydnones have been used as dipoles in 1,3-dipolar cycloadditions of pyrazoles. During the last decades solid phase methods, where either a dipole or dipolariphile is being temporarily bound to solid support, have been exploited in 1,3-dipolar synthesis. With the aid of solid phase methods, the synthesis can be controlled chemically by protecting groups that react easily. Also the isolation and purification can be made easier by using these techniques. The 1,3-dipolar solid phase methods can be combined with microwave techniques, to make the synthesis shorter and more effective. The goal of this work was to synthesize new N-unsubstituted pyrazoles, starting from sydnones bound to solid support and alkynes, with use of 1,3-dipolar cycloaddition reaction and to purify and analyze prepared compounds. The aim was also to develop a new 1,3-dipolar solid phase method so, that the end products could be cleaved easily in a traceless manner, and that there would be minor need for purification. There was also an aim to make the last step of the synthesis faster and easier with microwave reactor, and by using this method to standardize the conditions used in the cycloaddition-dehydration reaction step. The AMEBA-resin was chosen to be the solid support in this synthesis. Its traceless cleavage by trifluoroaceitic acid made possible not only the formation of the desired structure, but also effortless purification of the end product. The amino group of pyrazole was protected by the solid support during the N-nitrosation, so that after the traceless cleavage of the resin, N-unsubstituted pyrazoles were obtained. By changing the amino acids used in this synthesis, it was possible to alter the structure of the synthesized pyrazoles, and to create four structurally new pyrazoles. Microwave method used during the last step of synthesis for heating shortened the reaction step significantly, and also the yields of end products were better compared to conventional heating. During this work a functioning and developable 1,3-dipolar solid phase method was created, that can be utilized to synthesize pyrazoles and other compound of similar nature also the in future.
  • Tuononen, Maija Liisa (2011)
    River blindness (onchocerciasis) is a human helminth disease that is caused by Onchocerca volvulus filaria. It is endemic in tropical areas in Africa and Latin America. About 37 million people are infected. River blindness manifests in cutaneous and eye symptoms that are caused by the youngest forms (microfilariae). Against river blindness there has been mass drug treatments with ivermectin which has an effect on microfilariae. There is a need for a drug that kills adults or sterilizes females. A vaccine would be even better. Antibiotics are a new treatment because O. volvulus has Wolbachia bacterium as an obligate symbiont. Doxycycline kills at least 60 per cent of adults and sterilizes females. But the course lasts many weeks. A promising compound is emodepside that has a new mechanism of action for an anthelmintic drug. Numerous compounds has been examined to get drugs for filarial diseases. Some of them inhibit enzymes with which filariae evade human immune defence. Others disturb moulting that takes place four times. A good target for a drug is essential for the parasite but absent from mammals. Betulin is a triterpene that is abundant in birch bark. Betulin and many of its derivatives are pharmacologically active compounds that are examined particularly as cancer and HIV drugs. The research group of medicinal chemistry in University of Helsinki has synthesized and examined many derivatives. Some of them are promising for example against Leishmania protozoans, Chlamydia pneumoniae bacterium and alphaviruses. That is why those compounds should be tested against other causes of diseases like filariae. Both Wolbachia and C. pneumoniae have the same lipid biosynthesis pathway that is essential for both. Heterocycloadducts between betulin and nitrogen heterocycle were synthesized whose alcohols were oxidized to carbonyls. In both Leishmania donovani and L. braziliensis examinations the most effective compound was heterocycloadduct of formylbetulin. Although the compounds have not been examined against filariae, in future it would be worth an effort to synthesize derivatives that has nitrogen instead of carbonyls because the compound effective on C. pneumoniae is dioxime.
  • Teppo, Jaakko (2015)
    The properties of liquid and gas flows in microscale systems differ from those in macroscale; microfluidics is a field of science in which these properties are investigated and utilized for the development of microscale systems. Acoustofluidics is a branch of microfluidics focusing on the movement (acoustophoresis) or localization (acoustic trapping) of particles in microchannels using ultrasound. In this work, the suitability of a new miniaturized method for the screening of cell-drug interactions was investigated. In the method, the cells were acoustically trapped within a glass capillary, enabling liquid movement (generated with a syringe pump) in the capillary while the trapped cell cluster remains stationary. In this manner, the trapping of cells, their incubation with a drug solution, rinsing, and the elution could be done using the same capillary. The sample preparation was done using a miniaturized solid phase extraction technique (integrated selective enrichment target, ISET), and the analysis was done with matrix assisted laser desorption/ionization mass spectrometry (MALDI MS). The drug compounds investigated were selective serotonin reuptake inhibitors (SSRI). The research was conducted in five phases. In the first phase, a suitable solid phase extraction method for the drug compounds was investigated. In the second phase, the performance of the acoustic trap was investigated by acoustically trapping polystyrene beads and Coulter counting them. In the third phase, the method was modelled by conducting drug binding studies using cation exchange beads instead of cells. In the fourth phase, the drug binding studies were conducted by investigating the binding of drug compounds to human platelets and yeast cells. Platelets were chosen due to the expression of serotonin transporter, the molecular target of SSRI drugs, on their cell membranes. Also a cell membrane preparation containing serotonin transporter was used for the binding studies. In addition, memory effects occurring in the method were investigated. In the fifth phase, comparative drug binding studies without acoustic trapping were conducted. The suitability of the method for the screening of cell-drug interactions could not be thoroughly substantiated, but further research and method development are required. The reason for this was the inadequate sensitivity of the method, because of which large drug concentrations had to be used. This lead to the increased occurrence of memory effects.
  • Hassan, Ghada (2016)
    The aim of this study was to synthesize antimicrobial and anti-biofilm agents using abietic (AA) and dehydroabietic acids (DHAA). Bacterial biofilms are formed when bacteria cells cluster together within a self-produced extracellular matrix. This lifestyle makes bacteria highly resilient to different environmental stresses and conventional antibiotics when compared to single-cell bacteria. Currently, there are no approved anti-biofilm agents as drugs and only a few number of compounds can selectively target biofilms and eradicate them at low concentrations. Potent drugs targeting them are needed. AA and DHAA are abietane-type diterpenoids found in the resin of conifer trees. Antibacterial effects of resin acids have been widely studied, specifically against methicillin-resistant Staphylococcus aureus strain (MRSA). Through the combination of DHAA with different amino acids, Manner et al. (2015) discovered a new class of hybrid compounds that target both planktonic and biofilm bacteria in Staphylococcus aureus. The study group also discovered two of the most potent abietane-type anti-biofilm agents reported so far in literature. This thesis followed the work of the research group by designing and synthesizing additional AA and DHAA derivatives to target bacterial biofilms. Rings A, B and C of the diterpenoid core were modified and 24 derivatives were successfully synthesized. Amino acids were attached to the compounds either before or after ring modification. Standard structural elucidation techniques were used to confirm the structure of the synthesized compounds.
  • Widell, Kim (2010)
    The human tissue kallikreins (KLKs) form a family of 15 closely related serine proteases (KLK1-15). KLK3 is better known as prostate specific antigen (PSA) and it is highly prostate-specific. Kallikreins are attracting increased attention due to their role as biomarkers for screening, diagnosis, and monitoring of various cancers. Although PSA is a very useful marker for prostate cancer in the blood, the expression level of PSA is higher in normal prostatic epithelium than in tumour tissue, and it is further reduced in poorly differentiated tumours. It has been postulated that PSA activators (stimulating compounds) could be beneficial for patients with prostate cancer. The development of peptides as clinically useful drugs is greatly limited by their poor in vivo stability and low bioavailability. As the problems in using peptides as drugs are mainly arising from the peptide backbone, the focus for synthesizing peptide mimicking compounds is on the peptide backbone and how to replace it. The aim of this work was to replace the central disulfide bridge in the most potent PSA activating peptide C-4 by a hydrocarbon linker that had been previously synthesized in the research group. Two strategies for synthesis of the pseudopeptides were applied: a) synthesis of all peptide bonds on solid support by tailoring the reactions for this particular peptide, and b) synthesis of a monocyclic pseudopeptide in solution that could be incorporated directly into the standard protocol of solid phase peptide synthesis. The first strategy (a) proved to be tedious and would have required a lot of optimization to be successful. The cleavage conditions of the orthogonal protecting groups were not directly compatible with synthesis on solid support. The second strategy (b) also proved to be tedious, epimerization at the histidine residue was very prone in the solution phase even with standard peptide coupling reagents. However, the possibility to monitor all steps of the synthesis and to purify intermediate products made this synthetic route more attractive for this type of pseudopetide. The work in this master thesis resulted in a useful strategy to synthesise the desired pseudopeptides.
  • Mäki-Lohiluoma, Eero (2015)
    Seas are one of the most biodiverse and species-rich areas on the planet. Many of the underwater species are yet to be found and identified. The marine based drug discovery and the clinical pipeline of marine compounds have increased lately. Thus, there is a strong believe that the marine-derived compounds will provide new pharmaceutical lead compounds. Marine sponges are one of the most studied marine species. Sponges can be found in shallow and deep waters all over the world. Pseudoceratina purpurea is a Verondiga order sponge that is known to be a source of bromotyramines. Bromotyramines are tyramine derivatives that have represented biological activity including cytotoxity, antivirality and antimicrobial effects. Purpurealidin E is a bromotyramine that has been identified from Pseudoceratina purpurea. Purpurealidin E hasn't showed remarkable biological activity by itself, but it can be used as starting point for synthesis of novel bromotyramine derivatives. By forming an amide bond between carboxylic acid and primary amine of purpurealidin E, new bromotyramines can be synthesized. In this master's thesis, purpurealidin E was successfully synthesized. Total amount of 11 novel bromotyramine derivatives were synthesized by amide coupling. Three of the new bromotyramine derivatives and purpurealidin E were purified and their biological activity against hepatitis C virus (HCV) was evaluated. Purpurealidin E did not show any antiviral activity, but all the three compounds showed potential biological activity against HCV. This work can be considered to a continuum to the now ended MAREX project (Exploring Marine Resources for Bioactive Compounds: From Discovery to Sustainable Production and Industrial Applications).
  • Hannula, Juha (2015)
    Ambient mass spectrometry includes methods where ions are produced outside of the mass spectrometry in atmospheric pressure direct from the surface of the sample without sample preparation. The first and most popular ambient ionization methods are DESI, desorption electrospray ionization and DART, direct analysis in real time. DAPPI, desorption atmospheric pressure photoionization is an ionization method where samples are desorbed with hot vapor from surface and then ionized by photoionization. The aim of this study was to develop desorption atmospheric pressure photoionization method in transmission geometry. In transmission geometry hot vapor for microchip is directed through metal or polymer meshes to mass spectrometer inlet. Liquid samples can be analyzed either by soaking the mesh to liquid sample or apply a sample droplet to the mesh. Hot vapor desorbs analytes from the mesh and analytes are ionized in a gas phase by photoionization using VUV lamp. In this method optimal positioning of the mesh and the microchip was determined. Additionally optimal microchip heating power, dopant flow rate, nebulizer gas flow rate, capillary voltage and drying gas parameters were determined. Optimized method was applied for analyzing standard samples, vitamin juice samples and milk samples. According the analysis with authentic samples, transmission mode DAPPI can be applied for analyzing liquid samples without sample preparation. According the analysis with standard samples, transmission mode DAPPI can be applied for extraction of hydrophobic analytes from water samples. Comparing to conventional DAPPI, in transmission mode DAPPI spectra, intensities of the background ions are lower resulting higher signal-to-noise ratios with transmission mode DAPPI.
  • Tilli, Irene (2017)
    Melanoma is the most severe case of skin cancer and there is no curative treatment if it has progressed. Despite the recent advances in drug therapy tens of thousands of patients die of melanoma annually. There is still need for new antimelanoma drugs for which marine compounds are a potential source. Halogens are common elements in drug molecules as they enhance their molecular properties. So far most of the halogenated drugs contain fluorine and/or chlorine but the role of bromine and iodine is probably growing in the future due to halogen bonding. Bromotyrosines are originally isolated from Verongiida-order sponges but whether they are truly of bacterial origin is under controversy. All bromotyrosine compounds consist of brominated tyrosine and/or tyramine residues or their derivatives. Purpurealidin I is one of the newest bromotyrosine derivatives extracted from Pseudoceratina purpurea and it has shown activity against melanoma. In this study eight new purpurealidin I derivatives were synthesized following a successful route previously designed. All synthesized derivatives contained the original N-oxime structure which's stereochemistry was determined to be E by X-ray crystallography. Cytotoxicity against A375 melanoma cells was determined for seven compounds synthesized here and for 15 compounds synthesized previously. All seven compounds and one previously synthesized purpurealidin I analog were active with CC50 values between 4,7 and 22,1 µM. The previously synthesized bromotyrosine derivative intermediates and aerophobin-1 analogs were not active. The selectivity of the active compounds was calculated by determining their CC50 value against Hs27 fibroblast cells. None of the compounds showed remarkable selectivity the most selective 2-pyridin containing derivative having four times better selectivity against melanoma. The tyrosine part and N-oxime seem to be important parts to preserve while the tyramine part can be modified more freely and maintain the activity. Still more derivatives need to be synthesized and tested to confirm these observations. More data is also needed considering the selectivity of the compounds.
  • Valkonen, Minna (2013)
    The aim of this work was to investigate the feasibility of titanium dioxide (TiO2) photocatalysis for imitation of phase I metabolism of selected anabolic steroids. The role of the solvent composition and the time of UV exposure in the TiO2 photocatalysis were also investigated. TiO2 photocatalysis has been reported to produce mainly the same phase I reaction types formed in drug metabolism in vitro and in vivo. The selected anabolic steroids were testosterone, methyltestosterone, metandienone, nandrolone and stanozolol. Products from TiO2 photocatalysis were compared to products formed in microsomal incubations (HLM). Comparison was made on the basis of same mass, retention time and similarity of the product ion spectra. The samples were analyzed with ultra performance liquid chromatography (UPLC) and quadrupole time-of-flight mass spectrometry (Q-TOF). Electrospray ionization (ESI) in positive ion mode was used for ionization and product ion scan with two different collision energy was used for collision induced dissociation of the steroids and the reaction products. TiO2 photocatalysis is a simple and fast method. For all the steroids studied, the main reactions observed both in TiO2 photocatalysis and microsomal incubations were dehydrogenation, hydroxylation and combination of these two. Several isomers with same mass and retention time were formed. In addition, dihydroxylation and dihydroxylation+dehydrogenation products of stanozolol were observed both in TiO2 photocatalysis, but these were different isomers in different systems. In most cases the product ion spectra of isomers with same retention time were similar but the weak intensity of some peaks caused uncertainty in the interpretation of spectra. TiO2 photocatalysis might be useful in fast screening of possible drug metabolites. However the feasibility of TiO2 photocatalysis needs to be further studied because the differences in stereochemistry in TiO2 photocatalysis and microsomal incubations. If TiO2 photocatalytic reactions can be scaled up, it might be possible to produce standard compounds for example for doping laboratories.
  • Kokkala, Katja (2010)
    The characteristics of macrolides are discussed in general level in the theoretical part of this Master's thesis. The discussion is focused on the properties of two macrolides in molecular level and their tendency to form tautomeric forms highlighting the structural similarities and differences of these macrolides, which will affect both the mechanisms of action and the metabolism. Attention is also paid to biosynthesis and manufacturing process keeping focus on downstream process, especially the impurities, which arise from the macrolide biosynthesis. Also the principles of argentation chromatography are discussed. In the experimental part of Master's thesis a purification method for one macrolide was developed using argentation chromatography. Conventional chromatographic purifications cannot separate the macrolide from its impurities. The purity of the macrolide after argentation chromatography was 98.6%. Also a new crystallization method was developed, which produces anhydrous form of the macrolide instead of traditional monohydrate form. A method for analysing the macrolide using HPLC was developed. The method was validated according to ICH guidelines. The tautomeric forms and the impurities of the macrolide were analysed using LC/MS. One of these impurities was isolated and analysed with NMR thus confirming its identity. An analysed NMR spectrum of this impurity has not been published according to our best knowledge. A previously unknown impurity was identified based on MS analysis and retention time.
  • Säilä, Pasi (2016)
    Oxysterols and vitamin D related compounds are found to be biologically active in brain. They might be involved in different psychiatric and neurodegenerative diseases. These compounds have traditionally been analysed from tissues using somewhat laborious and time-consuming gas chromatograpy and liquid chromatography mass spectrometric methods. To the side of these methods ambient desorption ionization methods have been developed. The advantage of these methods is rapid and easy operation. Usually minimal or no sample pretreatment is required. In addition these methods can be applied to imaging of for example tissues. The aim of this work was to study if it is possible to detect certain oxysterols and vitamin D related compounds from rat brain tissue samples with desorption atmospheric pressure photoionization (DAPPI). The compounds chosen to this study were cholesterol, vitamin D3, 25-hydroxyvitamin D3, 7-dehydrocholesterol, desmosterol and 7-ketocholesterol. DAPPI is especially suitable for efficient ionization of this kind of neutral and non-polar compounds. Detected MS and MSn spectras of the brain tissue samples were compared to those obtained from standard compounds. As a result we could not detect vitamin D3, 25-hydroxyvitamin D3, 7-dehydrocholesterol, desmosterol from rat brain samples with DAPPI. Excluding vitamin D3 it is possible that those other analytes are present at the spectras of brain samples but there is some other compound with same mass which makes the reliable identification of studied compounds impossible. 7-ketocholesterol and cholesterol were the only compunds we detected from brain tissue sections. 7-ketocholesterol can be formed via auto-oxidation in samples containing excess amount of cholesterol. According to this study it is impossible to say if the detected 7-ketocholesterol is formed endogenously or during sample preparation and analysis.