Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Title

Sort by: Order: Results:

  • Aalto, Henni (2011)
    Lipids are fat soluble compounds that are derived from living tissues. Lipids have many important physiological functions. Developing methods for efficient lipid analysis is important since lipids can function as biomarkers in diseases. Additionally these methods can be used for the discovery of the biological processes of disease development. Lipids comprise of molecules with different polarity and structure. Several mass spectrometric ionization methods have been used in the analysis of lipids but they usually require sample preparation prior to the analysis. Desorption electrospray ionization-mass spectrometry (DESI-MS) and desorption photoionization-mass spectrometry (DAPPI-MS) are novel ionization methods that allow sample analysis straight from the matrix, such as tissue, usually without any sample preparation. DESI-MS has already been used in the analysis of different lipids, but DAPPI-MS has only been used in the analysis of steroids. The ionization of a range of lipid compounds (phospholipids, triglycerides, fat soluble vitamins, fatty acids, and steroids) by DAPPI-MS and DESI-MS was studied. Analysis conditions were optimized for all the different lipid classes with both DAPPI and DESI using standard samples. Some lipids were also analysed straight from pharmaceutical preparations. There were differences in the suitabilities of DAPPI-MS and DESI-MS for the ionization of different lipid classes. DAPPI-MS worked well for the ionization of nonpolar lipids like triglycerides, vitamins and fatty acids, but the phospholipids fragmented in the DAPPI-MS process and showed no molecular ion. Previous studies have shown that DESI-MS works well in the ionization of phospholipids, and this study showed that it works reasonably well for other lipid groups as well, with the exception of some of the nonpolar lipids. New knowledge was acquired especially about the suitability of DAPPI-MS for the analysis of different lipids. Based on the results it can be said that DAPPI-MS works equally well or better than DESI-MS in the ionization of most lipid classes. The DAPPI method should still be further developed so that phospholipids, which are very important lipids in human physiology, could be analysed by DAPPI-MS. As lipids were not analysed straight from a tissue sample, there are no conclusions about the suitability of DAPPI-MS for the analysis of lipids straight from tissue samples.
  • Lindfors, Pia (2010)
    The most important part in bioanalysis is the sample cleanup process which is usually the most laborious and time consuming part of the analysis and very susceptible to errors. A functional bioanalysis has to be quick, easily automated, sensitive, selective and stable. It also needs to be suitable for high throughput analysis. Desorption atmospheric pressure photoionization (DAPPI) is a novel direct desorption/ionization technique for mass spectrometry that enables direct analysis of solids from surfaces or liquid samples from a suitable sample plate often without any sample preparation. The suitability of DAPPI-MS for biological samples was investigated by measuring the limits of detection for selected opioids and benzodiazepines and screening them from authentic urine samples. Limits of detection were measured for standard solutions and spiked urine. Opioids and benzodiazepines were analyzed from post mortem urine samples with an optimized DAPPI-MS method. Post mortem urine samples were analyzed with and without sample preparation. Sample preparation improved the sensitivity of the method remarkably. About 50 % of the analytes were detected without sample preparation and almost 100 % after sample cleanup. It is however difficult to estimate the suitability of DAPPI-MS as a screening method because not all analyte concentrations of the urine samples were known. Therefore we cannot be certain weither the results obtained without sample preparation are caused by the suppression of the urine matrix or if the concentrations of the analytes are below the limits of detection. The reliability of the method can further be improved by investigating the metabolites of the analytes and improving the system towards automation. On grounds of this research DAPPI-MS should be used cautiously as a screening method for urine samples without sample preparation and with only high enough analyte concentrations. DAPPI-MS shows promise as a screening method for opioids and benzodiazepines from urine when the sample cleanup is used before the analysis.
  • Granqvist, Riikka (2021)
    Parkinson´s disease (PD) is the second most common neurodegenerative disease in the world after Alzheimer´s disease. There is still no drug that alters the state of the disease. It has been found that Endoplasmic reticulum (ER) stress is one mechanism in PD. ER stress occurs due to accumulation of unfolded proteins. ER stress triggers Unfolded protein response (UPR) that protects against ER stress by decreasing unfolding of proteins. In the beginning, UPR has protective effect, but in prolonged ER stress UPR triggers apoptotic cell death. There are several key mediators in the UPR pathway. Characterisation of ER stress in PD models may be important for the current and future drug development of PD. If ER stress is a significant factor that affects the disease development, it would be important to find a drug that alters these mechanisms and UPR. This may be a way to halt the disease development. Different animal models of PD, like 6-OHDA (6-hydroxydopamine) and MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) model, have similarities in their mechanisms. It has been found that ER stress occurs both in the brain of PD patients and animal models of PD. That is why studying and further characterisation in animal models is relevant. The aim of this study was to characterize ER stress in 6-OHDA rat model. The expression of some key mediators of the UPR were determined in this study. There were male and female Spraque Dawley rats in this experiment. 6-OHDA or saline was injected intrastriatally in 3 spots by stereotaxic surgery. Two weeks after 6-OHDA lesions, amphetamine-induced rotation test was conducted to the rats. The rats were divided into groups based on lesion size according to the results. For this study, the rats were euthanised at week 2 or week 4 post lesion. The rats were euthanised by carbondioxide, and the death was confirmed by decapitation. The brains were collected and stored in -80°C. Striatum and substantia nigra were collected later. Total RNA was isolated from these samples. Part of the RNA sample was used to conduct cDNA synthesis. Finally, the gene expression of Atf4, Ire1α, Xbp1s, Xbp1t, Grp78 and Chop was measured from these cDNA samples by qPCR (quantitative polymerase chain reaction). The qPCR data describes the expression of exact gene. The data was processed prior to statistical analysis. By statistical analysis, it was possible to compare the expression of these genes between 6-OHDA group and vehicle group. In addition, comparison was made between 6-OHDA treated groups at week 2 and 4. According to the results, only Chop expression had increased in 6-OHDA lesioned rats at week 2 compared to the vehicle group. In other genes there were no statistical differences, unlike in several other studies where the expression was found to be increased. Thus, the characterisation of this model requires further studying, possibly by increasing the sample size and studying later time points as well.
  • Parkkinen, Ilmari (2018)
    MicroRNAs are ~22 nucleotide long RNA strands which regulate gene expression by binding to the 3’UTRs of messenger RNAs. MicroRNAs are predicted to regulate about a half of all protein-coding genes in the human genome thus affecting many cellular processes. One crucial part of microRNA biogenesis is the cleaving of pre-miRNA strands into mature microRNAs by the type III RNase enzyme, Dicer. Dicer has been shown to be downregulated due to aging and in many disease states. Particularly central nervous system disorders are linked to dysregulated microRNA processing. According to the latest studies, Dicer is crucial to the survival of dopaminergic neurons and conditional Dicer knockout mice show severe nigrostriatal dopaminergic cell loss, which is a hallmark of Parkinson’s disease. By activating Dicer with a small-molecule drug, enoxacin, the survival of dopaminergic cells exposed to stress is significantly improved. However, enoxacin, which is a fluoroquinolone antibiotic, activates Dicer only at high concentrations (10-100 μM) and is polypharmacological, which may cause detrimental side effects. Therefore, enoxacin is not a suitable drug candidate for Dicer deficiencies and better Dicer-activating drug candidates are needed. The aim of this work was to develop a cell-based fluorescent assay to screen for Dicer-activating compounds. Assays which measure Dicer activity have already been developed, but they have some pitfalls which don’t make them optimal to use for high-throughput screening of Dicer-activating compounds. Some are cell-free enzyme-based assays and thus neglect Dicer in its native context. The RNA to be processed by Dicer does not represent a common mammalian RNA type. Most assays do not have internal normalizing factors, such as a second reporter protein to account for e.g. cell death, or the analysis method is not feasible for high-throughput screening data. Considering these disadvantages, the study started by designing a reporter plasmid in silico. The plasmid expresses two fluorescent proteins, mCherry (red) and EGFP (green), and a mCherry transcripttargeting siRNA implemented into a pre-miR155 backbone which is processed by Dicer. Thus, measuring the ratios of red and green fluorescence intensities will give an indication on Dicer activity. The plasmid also has additional regulatory elements for stabilizing expression levels. The plasmid was then produced by molecular cloning methods and its functionality was tested with Dicer-modulating compounds. The assay was optimised by testing it in different cell lines and varying assay parameters, and stable cell lines were created to make large-scale screening more convenient. Finally, a small-scale screen was done with ten pharmacologically active compounds. Transiently transfected, in Chinese hamster ovarian cells, mCherry silencing was too efficient for reliable detection of improvement in silencing efficiency due to floor effect. With an inducible, Tet-On, system in FLP-IN 293 T-Rex cells, the expression could be controlled by administering doxycycline and the improvement in silencing was quantifiable. The assay seemed to be functional after 72 hours and 120 hours of incubation using enoxacin (100 μM) as a positive control. However, the screening found no compounds to significantly reduce mCherry/EGFP fluorescence ratio and, additionally, the effect of enoxacin was abolished. Therefore, a more thorough analysis on the effects of enoxacin was done and, although statistically significant, enoxacin was only marginally effective in reducing mCherry/EGFP fluorescence ratio after 72 hours of treatment. It should be noted from the small-scale screening that metformin and BDNF, compounds previously shown to elevate Dicer levels, showed similar effects to enoxacin. The quality of the assay in terms of high-throughput screening was determined by calculating Zfactors and coefficients of variations for the experiments, which showed that the variability of the assay was acceptable, but the differences between controls was not large enough for reliable screening. In conclusion, the effects of metformin and BDNF should be further studied and regarding the assay, more optimisation is needed for large-scale, high-throughput, screening to be done with minimal resources.
  • Grazhdankin, Evgeni (2018)
    We have developed a software for homology modelling by satisfaction of distance restraints using MODELLER back-end. The protocols used extend exploration of distance restraints and conformational space. We drive the models in optimization cycle towards better structures as assessed by the used metrics on DOPE score, retrospective distance restraint realization and others. Hydrogen bond networks are optimized for their size and connectivity density. The performance of the method is evaluated for its ability to reconstruct GPCR structures and an extracellular loop 2. The software is written in object-oriented Python (v.2.7) and supports easy extension with additional modules. We built a relational PostgreSQL database for the restraints to allow for data-driven machine and deep learning applications. An important part of the work was the visualization of the distance restraints with custom PyMOL scripts for three-dimensional viewing. Additionally, we automatically generate a plethora of diagnostic plots for assessing the performance of the modelling protocols. The software utilizes parallelism and is computationally practical with compute requirements on an order of magnitude lower than those typically seen in molecular dynamics simulations. The main challenges left to be solved is the evaluation of restraint goodness, assigning secondary structures, restraint interconditioning, and water and ligand placement.
  • Reunanen, Saku (2020)
    Parkinson’s disease (PD) is a neurodegenerative disease in which dopaminergic neurons that form the nigrostriatal pathway gradually die. This causes the main motor symptoms of Parkinson’s disease: tremor, rigidity and bradykinesia. While PD affects 1-2% of total population, all currently used medicines are symptomatic, and there is no disease modifying therapy available at present. Although several different animal models for Parkinson’s disease exist, the lack of adequate animal models is often cited as a major obstacle for predicting the clinical success of potential drug candidates. Lewy bodies (LBs) are abnormal aggregates that develop and spread inside nerve cells of human PD patients, their main structural component being α-synuclein. Because α-synuclein is thought to play a major role in the pathology of PD, much research has been focused on it. Different α-synuclein-based animal models of PD exist today, of which the most recent are based on using direct injections of preformed α-synuclein fibrils (PFFs). These new α-synuclein based disease models have helped to understand the disease process in PD better, but cell death in these models takes longer to achieve and is often less pronounced compared to traditional neurotoxin based animal models of PD. The aim of this study was to participate in the development and characterization of a novel mouse model of PD. This new model combines PFF-injections with the commonly used neurotoxin 6-OHDA, which should result in more robust dopamine pathway degeneration than what is seen with the current PFF-based models. The main hypothesis of this study was that the combination of intrastriatal injections of PFFs and a low dose of 6-OHDA would cause gradual spreading of the α-synuclein aggregation pathology in the nigrostriatal dopamine pathway and progressive dopamine neuron loss leading to motor deficits. C57BL/6 mice were stereotactically injected unilaterally with both PFF and 6-OHDA, and their performance was assessed every other week with different behavioral tests until week 12. At the end, brains were collected and optical density of tyrosine hydroxylase (TH) and dopamine transporter (DAT) was measured from striatal sections, and TH and DAT positive cells in the substantia nigra were counted. The amount of Lewy bodies present in the brain slices was also counted from the cortex and substantia nigra areas of the brain. In the histological assays, statistically significant reductions of both TH and DAT were found in the brain sections of the PFF + 6-OHDA combination group and the amount of TH and DAT positive cells were lower in this group compared to the group receiving vehicle treatment only. However, the results of behavioral tests were non-significant, although a non-statistical positive trend in the amphethamine-induced rotations test was observed where mice receiving PFF + 6-OHDA rotated the most. Taken together, combination model that utilizes both PFF and 6-OHDA injections seems like a promising candidate in modelling PD in mice, but much more research and further development of the model is required before this combination model is ready and robust for use in drug development.
  • Anttila, Emmi (2021)
    Mild traumatic brain injury (TBI) is defined as an injury that disrupts the normal functioning of the brain and is the result of external force to the head. It is the most common type of traumatic head injury, and it is common especially in contact sports and within military personnel. Mild TBI typically causes no clear structural changes to the head, but it can induce persistent clinical symptoms, as well as microscopic pathological changes to the brain that may eventually lead to neurodegeneration and increase the risk for several diseases. Mild TBI is a risk factor for several neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and chronic traumatic encephalopathy. The primary objective of this study was to develop a repetitive mild TBI mouse model for future research purposes in the field of head trauma and neurodegeneration. The injury was induced as a closed head injury with an electromagnetic impactor. Literature and pilot experiments were used to define the parameters of the impactor required to induce a brain injury of desired severity. The characterization criteria of the mild TBI model considered the criteria used to define human mild TBI, as well as long term effects often reported after repetitive mild TBI: neurodegeneration as tau protein related pathology, neuroinflammation, and memory deficits. The secondary objective of this study was to tentatively test a prolyl oligopeptidase (PREP) inhibitor on the behavioral and histological effects of mild TBI. The functioning of the mild TBI model was studied by histopathological and behavioral assessments. After baseline behavioral assessment and repetitive (1 injury every 24 hours altogether 5 times) mild TBI inductions, the mice were monitored for approximately 3 months, during which several rounds of behavioral tests were performed. Barnes maze and novel object recognition tests were used to assess memory functions, and locomotor activity test was used to assess general locomotor activity. After euthanasia, brain histopathology was performed to study the amount of tau protein and the level of neuroinflammation. Due to the low number of animals in the study, the results are directional and need to be confirmed in subsequent studies. The histopathology showed greater amount of neuroinflammation and tau protein in the brains of injured mice, but statistical evaluations could not be made. Memory functions were slightly worse in the injured mice compared to controls, but significance of the results is unclear. Locomotor activity was not influenced by the mild TBIs. PREP inhibition treatment increased the locomotor activity of the mice, but the significance is unclear. The mild TBI model seems promising and the characterization criteria were partially met. The results of the study need to be verified in subsequent studies with a greater amount of animals. The model developed here can be used to study the involvement of head trauma in neurodegeneration, as well as treatment alternatives to changes caused by mild TBIs. As there currently are no curative treatments to neurodegenerative diseases, research regarding neurodegeneration and its risk factors is highly important.
  • Katajamäki, Jani (2021)
    Cytochrome P450 (CYP) enzyme inhibition is one of the most common reasons for adverse drug-drug interactions. An especially harmful form of inhibition is time-dependent inhibition (TDI) in which the inhibition potency increases over time and persists even after discontinuation of the drug. Both direct and time-dependent inhibition can be efficiently screened with the so-called cocktail method containing several CYP-selective probe substrates in a single reaction mixture. This method is practical especially in ADME studies of drug development, as it offers lower costs, consumption of fewer reagents and faster implementation in comparison to conventional methods. In addition, the cocktail method can be used to establish new diagnostic CYP inhibitors in vitro. The aim of this Master’s thesis was to participate in the development and optimization of a new cocktail assay method. The method was developed for screening of major drug-metabolizing CYP enzymes in vitro both in a direct and time-dependent manner using pooled human liver microsomes. Based on preliminary testing, included probe substrates were divided into two cocktails to avoid significant inter-substrate interactions: cocktail I containing tacrine/CYP1A2, bupropion/CYP2B6, amodiaquine/CYP2C8, tolbutamide/CYP2C9 and midazolam/CYP3A4, and cocktail II containing coumarin/CYP2A6, (S)-mephenytoin/CYP2C19, dextromethorphan/CYP2D6 and astemizole/CYP2J2. First, cocktail incubation conditions were optimized, followed by the determination of probe reaction kinetics, kinetic parameters (Km, Vmax) and inter-substrate interactions with single- or dual-substrate incubations. Finally, suitable probe substrate concentrations and the composition of cocktails was evaluated based on the obtained results. As a result of assay optimization, optimal incubation conditions for yet unoptimized cocktail II were established. In optimized incubation conditions, all probe reactions exhibited saturable Michaelis-Menten kinetics except for tacrine 1-hydroxylation (CYP1A2), which exhibited biphasic kinetics instead (Km1: 7.36, Km2: 517). The selected probe substrate concentrations were all below or near their respective Km values except for (S)-mephenytoin 4’-hydroxylation (40 µM vs. Km of 12.5 µM); however, its concentration could not be reduced in order to maintain sufficient metabolite formation for UHPLC-MS/MS-analysis. Dual-substrate incubation assays demonstrated a need for the reduction of bupropion concentration below 100 µM due to its inhibitory effects on CYP2C8 and CYP3A4. In addition, chlorzoxazone/CYP2E1 and testosterone/CYP3A4 were tested as complementary probe substrates for the cocktails; however, they proved to be unsuitable for both cocktails due to significant interactions (>40% inhibition). Prior to the deployment of the method, some adjustments of probe substrate concentrations are still required in addition to consideration of the suitability of less commonly used CYP3A4 and CYP2E1 probe reactions to improve cocktail coverage. Lastly, validation of the method with known time-dependent model inhibitors should also be conducted. Besides to improvement of the cocktails, new information was generated on inter-cocktail probe-probe interactions and enzyme kinetics of probe reactions, especially for the less-studied astemizole O-demethylation (CYP2J2) and tacrine 1-hydroxylation (CYP1A2). Generated information can be used, for example, in the development of new cocktails.
  • Juntunen, Maiju (2020)
    Cancer immunotherapy refers to therapy strategies that utilise the mechanisms of the immune system to treat cancer patients. The benefits of the approach include the possibility for specific targeting and utilisation of the host immune system. The treatment methods include cancer vaccines, oncolytic viruses (OVs), cell-based immunotherapies and antibodies. The interplay between the cancer and the immune system has been observed crucial for the progress of the cancer and the success of immunotherapies. An immune inflamed tumour microenvironment has been observed beneficial for the success of several therapy methods. Many immunotherapy methods rely on detecting tumour specific antigens that are used to guide the therapy agent to the target site. This strategy poses challenges when considering tumour immune evasion mechanisms, which can cause downregulation of target antigens, and heterogeneity of tumour cells and patients. OVs have the advantage of not requiring predetermined target structures to exert their effect to the tumour cells. They cause direct tumour cell lysis and induce immune responses, and may be modified to express additional genes, including immunostimulatory agents. However, virus-related immunosuppressive mechanisms and a rapid viral clearance may limit their effects. A Western Reserve (WR) Vaccinia virus (VACV) is a highly oncolytic virus strain but the virus has been observed to suppress the function of the cyclic guanosine monophosphate adenosine monophosphate synthase – stimulator of interferon genes (cGAS STING) innate immune pathway which has been shown to have a significant role in anti-tumour immune responses. The aim of this study was to create a WR VACV encoding a dominantly active (D A) STING and to determine whether the virus is capable of activating the cGAS STING pathway. The effects were compared to a corresponding virus vvdd tdTomato that does not have the STING encoding gene. The pathogenicity of viruses was controlled by a double deletion of the thymidine kinase and vaccinia growth factor genes which restricts the virus replication to tumour cells. Transgene fragments were cloned from template plasmids by polymerase chain reactions (PCRs) and joined together in a Gibson Assembly (GA) reaction to form a STING-P2A-eGFP gene insert. The insert was attached to a shuttle vector pSC65-tdTomato by restriction enzyme digestion, ligation and transformation in Escherichia coli. The correct transgene plasmid construct was verified by Sanger sequencing and PCRs. The transgene was inserted to a modified WR VACV vvdd-tdTomato-hDAI by a homologous recombination. The newly created VVdd STING-P2A-eGFP virus was purified by plaque purification. The STING protein expression was studied by an immunocytochemistry (ICC) assay. The immune signalling pathway activation was examined by testing nuclear factor kappa-light chain-enhancer of activated B cells (NF-κB) activation in RAW-Blue cells and dendritic cell activation and maturation in JAWS II cells. The cell viability after iinfection was studied with four cell lines; A549, B16-F10, HEK293 and MB49. The D-A STING expressing virus was produced successfully. The ICC experiment verified the capability of the VVdd STING-P2A eGFP to produce the STING protein in the infected cells. The preliminary findings indicate that the VVdd STING-P2A-eGFP virus activates the NF-κB signalling in the RAW-Blue cells and that the activation is dependent on the STING expression. The activation level is relative to the infection concentration at MOI range 0,001 to 0,1. The findings suggest that the VVdd-STING-eGFP virus can induce innate immune signalling via the STING pathway. The reference virus did not activate the signalling. The in vitro experiments also indicated that the STING virus may induce DC activation and maturation. We observed a trend of CD86 and CD40 expression upregulation on the JAWS II DCs. The effects to the cell viability were inconclusive. More studies should be conducted to verify the results. The effects of the virus should be studied in more advanced cancer models that take into account the complexity of the immune system. These preliminary results indicate the that the VVdd-STING-P2A-eGFP virus could stimulate the immune signalling through the STING pathway.
  • Uoti, Arttu (2021)
    Background and objectives: Cancer is one of the leading causes of death worldwide, and resistance to current treatments demands the continuous development of novel cancer therapies. Cancer immunotherapy aims to induce anticancer immune responses that selectively target cancer cells. Viruses can also be harnessed to elicit tumor-specific immune responses and to improve the response rates of other concomitant cancer therapies. The purpose of this study was to develop a novel viral vector-based cancer vaccine for intratumoral immunotherapy. By using the previously developed PeptiENV cancer vaccine platform, the vector viruses were coated with cell-penetrating peptide (CPP) sequence-containing tumor peptides in an attempt to further drive the immune responses elicited by the vector against cancer cells. The efficacy of the PeptiENV complex as a cancer vaccine was assessed by following its effects on tumor growth and the development of local and systemic antitumor immune responses. Methods: The PeptiENV complex formation was assessed by a surface plasmon resonance (SPR) analysis. Dendritic cell (DC) activation and antigen cross-presentation were studied using the murine JAWS II dendritic cell line. The development of cellular immune responses against tumor antigens was first studied by immunizing mice with the PeptiENV complex. The antitumor efficacy and immunity of intratumoral PeptiENV administration were then studied using the murine melanoma models B16.OVA and B16.F10.9/K1. In addition to intratumoral PeptiENV treatment, some of the B16.F10.9/K1-implanted mice were also treated with an anti-PD-1 immune checkpoint inhibitor (ICI) to study the PeptiENV complex as a biological adjuvant for ICIs. Results: The SPR analysis confirmed that CPP-containing peptides can be stably anchored onto the viral envelope of the viral vector. The in vitro results showed that the PeptiENV complex does not hamper the presentation of antigens at the surface of DCs. Additionally, the viral vector was found to activate DCs seen as a change in the cells’ morphology and surface protein expression. Immunizing mice with the PeptiENV complex induced a robust antigen-specific cytotoxic T cell response. Upon intratumoral administration in vivo, the PeptiENV cancer vaccine was not capable of inducing tumor growth control against B16.OVA melanoma, although it did still elicit robust systemic and local antitumor T cell responses. In the treatment of B16.F10.9/K1 melanoma, however, the PeptiENV complex induced efficient tumor growth control, which resulted in a significant survival benefit. Additionally, co-administration of anti-PD-1 resulted in an additive therapeutic effect. Discussion and conclusions: The present study describes a novel, highly immunogenic viral vector-based cancer vaccine that has the potential to be used as an adjuvant treatment for ICI therapy. Subsequent studies could be conducted to gain a deeper understanding of the immunological mechanisms underlying the antitumor efficacy of the cancer vaccine complex. Moreover, this novel PeptiENV complex could also be further developed as an infectious disease vaccine platform against emerging pandemics. However, the effects of pre-existing antiviral immunity on the efficacy of the cancer vaccine should be explored in future studies.
  • Pusa, Reetta (2024)
    The potential of extracellular vesicles (EVs) as diagnostic markers and drug delivery vehicles has been studied increasingly in recent years. One of the challenges in this field has been the isolation of EVs from complex biological fluids such as blood. The methods widely used for the isolation process include for example size exclusion chromatography (SEC) and ultracentrifugation (UC). As these methods use size and density of the particle, the have not been efficient enough in isolating EVs from certain particles such as lipoproteins. Due to the challenges related to these methods, other isolation methods have been sought to improve the efficiency of EV isolation. One of these methods is ion-exchange chromatography (IEC). From the two forms of IEC, anion-exchange chromatography has been studied more in EV isolation due to the negative net charge on EV particles. However, in this study the functionality and efficiency of cation-exchange chromatography (CEC) in EV isolation was studied as very little research has been done on this method. In this study, two CEC-resins were studied to define their applicability in EV isolation. A standard strong cation-exchange chromatographic resin SP Sepharose Fast Flow was compared to a strong tentacle-type resin. In addition to this, we studied the possibility to use a magnesium gradient to separate different forms of lipoproteins from EVs through dextran-sulfite precipitation. Tentacle-type CEC-resin was found to be more efficient in capturing EVs compared to the standard-type resin without magnesium. These EVs could then be eluted from the column with sodium chloride. The use of magnesium gradient allowed the separation of apolipoproteins in the samples. Higher concentrations of magnesium also reduced the number of lipoproteins in the samples altogether but resulted in the loss of EVs as well. These results were promising and showed that cation-exchange chromatography can be used in EV isolation. Tentacle-type resin seemed to be most efficient in removing impurities and capturing EVs. While more research is needed before these findings can be applied to clinical use, these results prove that cation-exchange chromatography can be used in EV isolation as a new, efficient and up scalable method.
  • Jämsä, Antti (2023)
    Prolyl oligopeptidase (PREP) is endopeptidase which cleaves short proline containing peptides. Abnormalities in brain PREP activity has been connected to neurodegenerative diseases. Recently it has been detected that besides its proteolytic activity PREP interacts directly with other proteins which might contribute to generation of neurodegenerative diseases. Further it has been discovered that certain small molecular PREP inhibitors are able to modify these protein-protein interactions (PPIs) and thus have a potential to alleviate the progression of neurodegenerative diseases. This has led to the development of novel second generation PREP ligands which lack the strong inhibitory activity but are potent compounds on modifying the PPIs. Thiazole structure containing PREP modulators has provided most promising class of compounds. It has been detected that these compounds mediate their effects via novel binding site on the enzyme and these effects are not connected to the inhibition of the enzymatic activity. The synthesis of these thiazole containing PREP modulators has proven to be demanding since it have involved a usage of laborious synthesis route and provided low yields. The aim of this research was to examine the synthesis of 2-(2-benzimidazol-1-yl)ethyl)- 4-methyl thiazole containing PREP modulators via previously reported synthesis route. Another aim was to design and develop a synthesis route for 2-(2-(benzimidazol-1- yl)ethyl)-5-bromo-4-methylthiazole, a molecule which serves as valuable intermediate for the lead optimization and generation of second-generation PREP modulators. A synthetic route for 2-(2-(benzimidazol-1-yl)ethyl)-5-bromo-4-methylthiazole was successfully developed. Despite that the total yield of the route remained low. When searching the reasons for the low obtained yield the chemistry behind a thiazole creating cycloaddition reaction and an aromatic halogenation was examined. This led to the discovery of a rare cationic compound which was found to be synthesized from previously undescribed starting materials.
  • Tyyskä, Miia (2009)
    Diabeetikoiden määrä lisääntyy jatkuvasti. Samalla hoitokulut ovat kasvaneet merkittävästi. Paras tapa hillitä kustannusten kasvua on hoitaa diabetesta mahdollisimman hyvin. Näin voidaan ehkäistä myös diabetekseen liittyvien oheissairauksien syntyä. Diabeteksen hoidossa on tärkeää kiinnittää huomiota hoidon jatkuvuuteen ja potilaan hoitoon sitoutumiseen. Apteekin henkilökunnan asema on noussut yhä keskeisemmäksi diabeetikon hoitoon sitoutumisen edistäjänä. Tämän pro gradu -tutkielman tavoitteena oli selvittää, mikä on apteekin farmaseuttisen henkilökunnan rooli diabetespotilaan hoitoon sitouttamisessa, elämäntapamuutosten toteuttamisessa ja niiden pysyvyyden varmistamisessa. Asiaa tarkasteltiin voimaantumisen teorian näkökulmasta. Tarkoituksena oli selvittää, miten voimaantuminen yksilössä tapahtuu, miten sitä voidaan apteekkineuvonnalla edistää ja mikä on apteekin rooli ulkopuolisena voimaannuttajana. Tämän tutkimuksen aineisto on kerätty Mäntyharjun Havu apteekissa ja se on osa laajempaa tutkimusta, jonka päätavoitteena on kehittää ja testata apteekkeihin soveltuva yksilökeskeinen toimintamalli tyypin 2 diabeteksen hoidon tukemiseen. Toimintamalli perustuu säännöllisiin neuvontatapaamisiin apteekissa. Pro gradu -tutkielmaan analysoitavaksi valittiin tutkimusjoukosta (n=19) ne, joilla tapahtui apteekkiohjelman aikana eniten positiivisia muutoksia yksilötasolla sekä elämäntapamittareilla mitatuissa arvoissa että kliinisissä parametreissa (n=4). Kvaliatiivisessa analyysissä käytettiin sekä deduktiivista että induktiivista lähestymistapaa. Vaikka diabeetikoilla oli tietoa sairaudesta ja elämäntapojen merkityksestä, niin käytännön tasolla jokainen henkilö kaipasi hoitoon ja erityisesti muutosten toteuttamiseen tukea ulkopuoliselta taholta. Apteekin rooli ulkopuolisena voimaannuttajana koettiin erityisen keskeiseksi. Tapaamiset loivat oikeanlaisen ympäristön ja ilmapiirin elämäntapamuutosten toteuttamiseen ja voimaantumisprosessin etenemiseen. Voimaantuminen ruokavaliomuutoksiin oli koko intervention aikana melko nousujohteinen prosessi. Sen sijaan voimaantuminen liikunnalliseen elämäntapaan oli aaltoilevaa. Apteekkitapaamiset sosiaalisena tapahtumana paransivat asiakkaan hoitoon sitoutumista. Asiakas koki, että häntä kohdellaan yksilönä kokonaisvaltaisesti. Voimaantuakseen yksilö tarvitsi aikaa. Vuoden mittaisen intervention aikana voitiin saavuttaa pysyviä muutoksia elämäntapoihin, mikäli yksilöllä itsellään oli halu ja motivaatio sitoutua tukiohjelmaan. Tämä tutkimus osoitti, että tämänkaltaista apteekkiohjelmaa tarvitaan. Nykyisessä kiireyhteiskunnassa ihmiset arvostavat, jos jollakin on aikaa paneutua yksilöön itseensä ja hänen sairautensa hoitoon kokonaisvaltaisesti.
  • Lähdeniemi, Veera (2021)
    Drug metabolism is a series of enzyme catalysed processes that modify foreign compounds into a form that is more easily excreted from the body. Compounds can affect the activity of metabolizing enzymes and this may lead to toxic concentrations of a drug that is metabolized via the enzyme. With prodrugs, on the other hand, the drug might not achieve its biologically active form and therefore the treatment will not be effective. Recognizing and preventing metabolic interactions is important already in the early stages of drug discovery and development. Cytochrome P450 (CYP) enzyme inhibition is one of the major reasons for adverse drug-drug interactions (DDIs). The inhibition can be time-dependent (TDI), which means that the potency of inhibition increases over time. TDI may be reversible or irreversible, latter being more severe as new enzymes need to be produced in the body to restore the enzymatic activity. IC50 shift assay is a method that gives information of new compounds potential to cause TDI. IC50 shift assay does not show whether the TDI is reversible or irreversible, however further studies, e.g. dialysis assay, can be conducted to find it out. If the study compound is irreversibly bound to the enzyme, the enzyme activity should not recover in the dialysis. The aim of this master’s thesis was to develop a dialysis method that could determine the reversibility of the TDI observed in the IC50 shift assay. A dialysis method conducted with microsomes is described in earlier literature. Known inhibitors (both time-dependent and direct) for four CYP isoforms were studied in this work: CYP1A2 (furafylline and fluvoxamine), CYP2C9 (tienilic acid and sulphaphenazole), CYP2D6 (paroxetine and quinidine) and CYP3A4 (verapamil, azamulin and ketoconazole). IC50 shift assays were conducted to each inhibitor before the dialysis experiment. The studied compounds behaved in the dialysis assay mostly as assumed based on the literature. The workflow from IC50 shift assay to dialysis assay worked successfully and the IC50 shift data could be utilized when choosing the test concentrations for dialysis assay. Both the IC50 shift assay and dialysis assay were reproducible and the deviations between replicates and separate studies were relatively low. The method still requires some optimizing, but so far, the results are promising. In the future the dialysis method may be part of in vitro CYP inhibition studies at Orion Pharma.
  • Porola, Pauliina (2012)
    Hepatotoxicity is an undesired feature of many drugs and is one of the main reasons for attrition during the drug development process. Although an in vitro model can never totally correspond to or replace a whole organism, a reliable in vitro model for liver toxicity screening would help to detect liver toxicity earlier in the development process. Effective and early in vitro screening would reduce the need of animal subjects and clinical trials and thus would be both ethically more acceptable and more cost-effective. Currently mostly used models for liver metabolism and toxicity studies are primary hepatocytes, hepatic cell lines and animal models. However, these models have many drawbacks and are not considered reliable. Human embryonic stem cells (hESCs) are pluripotent cells that can be differentiated into many specialized cell types including hepatocytes. They are also self-renewable and thus represent an unlimited and promising source of hepatocytes to be used as a tool in in vitro liver toxicity testing of drug candidates. The aim of this study was to produce hepatocytes from hESCs via multiple steps following the in vivo pathway of developing hepatocytes: first hESCs were differentiated into definitive endoderm cells, after which they were differentiated into hepatic progenitor cells. Finally, hepatocyte-like cells (HLCs) were induced from the progenitor cells. Our specific interest was the use of hepatic cell derived acellular matrix as a differentiation basis for hepatic progenitors and hepatocytes. We also studied the effect of Matrigel overlay on the hepatic differentiation. Differentiation method without the Matrigel overlay was promising. HLCs showed correct hepatocyte-like morphology and expressed hepatocyte markers such as albumin, α-antitrypsin, CYP3A4 and HNF4α both on mRNA and protein level shown by qPCR and flow cytometry and immunofluorescence staining, respectively. Accordingly, the expression of stem cells marker SSEA-3 showed a tendency to decrease as the differentiation proceeded. HLCs also functionally resembled hepatocytes shown by albumin production. However, we could not detect other hepatocyte functions such as urea production or CYP activity. With Matrigel overlay, the hepatocyte-like morphology of the cells was lost, no albumin production was shown and the expression of several hepatocyte markers was lower than in the experiment done without the Matrigel overlay. Thus, Matrigel overlay was shown to be unbeneficial for hepatocyte differentiation. In conclusion, we showed that differentiation of hESCs on the acellular matrix with specific growth factors and without the Matrigel overlay seems promising as a method to produce HLCs. This preliminary study serves as a basis for future studies, in which the differentiation method should still be further studied and developed to yield functional HLCs of uniform quality.
  • Kuisma, Saara (2012)
    Pharmaceutical companies are currently facing increasing developmental costs, and at the same time, less new compounds are being brought to the market. In vitro -metabolism studies and toxicity assessment of new drug candidates are crucial, as early as possible, to prevent their withdrawal in later development phases. Used study systems are, however, limited and new improved technologies are being investigated. Notable, drug induced liver toxicity and alterations in the liver function are frequent reasons for the drug removals from the development. Human embryonic stem cell (hESC) is one of the most powerful cell types known. hESCs have not only the possibility to divide indefinitely but these cells have also the ability to differentiate to all mature cell types of the human body, such as hepatocytes. This makes them potentially very valuable for pharmaceutical development, in order to create a functional in vitro -model, mimicking the liver tissue. In the literature part, the three dimensional (3D) -hepatic differentiation of mouse and human ESCs in vitro, are discussed. Traditional 2D-culture systems do not adequately mimic the microenvironment of three dimensionally organized native tissue. In 2D-cultures cells grow as a monolayer, when the cell morphology is flattened leading to poor cell-cell and cell-matrix contacts and preventing from the tissue formation. In 3D-culture systems, cells are able to form tissue-like cell integrations, spheroids, and thus, remain their functionality and viability significantly longer. Hydrogels are commonly used biomaterials in 3D-cell cultivation and well known in various areas of tissue engineering for their nano scale porosity and ability to surround cells in 3D-polymer network. In addition, they are capable to absorb large volumes of water and functionalized, in various ways, to improve the required biological or mechanical properties. In the experimental part, the main purpose was to differentiate human hepatic progenitor cells to mature hepatocyte-like cells in three dimensional (3D) -biomaterials. Overall, four different hydrogels (cellulose nanofiber (CNF) hydrogel, HydroMatrixTM, ExtracelTM and PuraMatrixTM) were used as 3D-cell culture scaffolds. Several hepatic cell functions (albumin and urea production and cytochrome P450 (CYP) 3A4 activity) were measured in 2D- and 3D-cultures and compared with the human hepatic carcinoma cells, HepG2, which are often used in drug development. Differentiated hepatocyte-like cells did not show CYP3A4 activity and they produced less albumin and urea compared with HepG2 cells. However, working with hESCs is very demanding and the research in this area is only in the beginning. Therefore, the poor cell functionality results did not come up as a surprise.
  • Turunen, Tiina (2016)
    Posterior eye segment diseases, such as age-related macular degeneration, are leading causes of preventable visual impairment in the developed countries. Direct intravitreal injections are currently routinely used to deliver therapeutic agents most efficiently to posterior eye segment. Regular injections can however cause ocular complications and some drugs may also be toxic to ocular tissues at high local concentrations of free drug. Different nano-sized particulate systems have been extensively studied as possible drug delivery systems for intravitreal administration offering sustained, local drug action with controlled release. The vitreous gel can form a barrier for diffusion of particles due to its macromolecular structure and composition. Furthermore, ageing and different disease states cause changes in the vitreous structure possibly resulting in shift in the intravitreal movement of particulate systems. In the literature part of this Master's thesis ocular drug delivery is reviewed with main focus on drug targeting in the posterior eye segment. In the experimental work liposomes with different lipid compositions and surface charges were prepared as model particulate systems to evaluate the intravitreal diffusion of nanoparticles with confocal microscope. Furthermore, the influence of aging on the intravitreal diffusion was modeled by enzymatic degradation of the vitreous gel structure. It is discovered that vitreous gel hinders the movement of nanoparticles. Level of hindrance depends on particle's characteristics. 100-200 nm anionic particles move quite freely in the negatively charged vitreous gel. Similarly sized cationic particles are immobile in the vitreous due to electrostatic interactions between surface of the cationic particle and anionic glycosaminoglycans in the vitreous. 1 µm anionic and cationic particles are sterically trapped inside the vitreous meshwork created by the 3-dimensional biopolymer network of the vitreal macromolecules. Vitreous liquefaction increases the diffusion rate of nanoparticles but the clinical impact on ocular pharmacokinetics needs further research.
  • Veijanen, Terhi (2020)
    Granulation is used to improve the flowability of pharmaceutical powders, reduce the amount of fines and increase the density of the material. Roller compaction has shown growing interest in recent years and it is used ever more frequently in pharmaceutical industry. Roller compaction has many superior qualities compared to wet granulation such as good control of process and absence of moisture and heat in the process. It is also cost effective compared to traditional granulation methods. New APIs are often sensitive to moisture. Therefore traditional granulation methods cannot be used. In the roller compaction process powder mixture is fed between two counter-rotating rolls where the compaction occurs and ribbon is formed. After compaction the ribbon is crushed into granules of desired size. The aim of this study was to find out how the mixture ratio of plastic and brittle material affects the physical properties of roller compacted ribbons such as the strength and stiffness of the ribbons and the structure of the ribbon surface. The materials used were microcrystalline cellulose and dicalsiumphosphate. Nine powder mixtures of 0 to 40 w-% of dicalsiumphosphate were prepared after which the mixtures were roller compacted with the same compactor parameters. Two methods were developed to study the above mentioned characteristics of the ribbons. For the stiffness and strength studies a 3-point bending method was developed for Lloyd material tester. For the surface structure characteristics of ribbons a measurement set up for FlashSizer 3D image analysis device was designed. Bending tests for the ribbons were performed in two different directions. For each batch of ribbons a slope of the linear area and maximum point of bending curves were defined, which represent the stiffness and strength of the ribbons accordingly. Also Young’s modulus and tensile strength were calculated, which are characteristics of a given material. In addition area under curve, which represents the work done to break the ribbon, was calculated. The strength and stiffness of the ribbons decreased with the increasing amount of dicalsiumphosphate. A clear trend was observed. Also Young’s modulus, tensile strength and AUC decreased accordingly. The increase of dicalciumphosphate led to diminished compactibility of the powder mixtures. The compaction force was probably not high enough to fragment the dicalsiumphosphate particles. The ribbons showed higher strength and stiffness when the bending was done perpendicularly ie. across the ribbon width compared to parallel measurements. Also relative standard deviations were smaller in this measurement set up. The 3-point bending method could not mostly distinguish between adjacent formulations from each other but when the difference in the amount of dicalsiumphosphate increased to 10-20 w-% statistically significant differences were observed in most of the calculated values. The surface structure of the ribbons differed between formulations when evaluated visually. Ribbons with less dicalsiumphosphate had a surface structure that followed the knurled pattern of the compactor rolls better.
  • Tuominen, Elsi (2021)
    Neurodegenerative diseases and neuronal injury after trauma are common causes of neuronal loss. Adult brain has only a limited regenerative capability to replace the lost neurons caused by several distinct brain diseases. Direct reprogramming of brain resident cells into neurons could provide a promising strategy for efficiently replacing non-functional neurons. To date, the focus has been put largely on astrocyte-to-neuron reprogramming despite the relatively low yield of newly generated neurons reported in vivo. According to our hypothesis oligodendrocytes possess a more diverge transcriptomic profile when compared to neurons and astrocytes thus allowing better cell-specific targeting of reprogramming. Here, we establish the molecular tools for direct neuronal reprogramming of human oligodendrocytes to neurons. We investigate whether the expression of a known neural fate specification factor under selected oligodendrocyte-specific promoters is sufficient to induce oligodendrocyte-to-neuron transformation. Furthermore, we test the established tools in vitro using an immortalized human oligodendrocyte cell line. Our preliminary data shows that the human ERBB3 promoter and a single transcription factor transfected cells express doublecortin (DCX), an early marker of neuronal identity. Only recently, the direct in vitro reprogramming of human oligodendrocyte precursor cells into functional neurons has been reported. The direct reprogramming of oligodendrocytes into neurons provides an exciting alternative of neuronal replacement for astrocyte-to-neuron reprogramming. Overall, the field of direct reprogramming offers interesting possibilities for regenerative medicine providing a method for the production of newly generated disease and patient-specific cells.
  • Nurmi, Satu (2014)
    Many drugs are known to bind to melanin, a complex pigment polymer found in several human tissues. Melanin can act as a natural depot by prolonging the effect of the drug and reducing its toxicity. Since it is highly concentrated in the posterior part of the eye, pigment targeted long-acting drug delivery systems are proposed as an option in ocular diseases. In systemic drug delivery, pigment targeted drugs can potentially distribute to any melanin containing tissue. Therefore, the literature review of the thesis concentrates on the characteristics of melanin and melanosomes, drug binding property and melanin distribution in humans and other species. The main objective of the exploratory part was to determine if melanin binding can be studied with SPECT/CT (single photon emission computed tomography / computed tomography) imaging method. Two different melanin binding drugs, chloroquine and nadolol, were selected and labeled with iodine and radioactive iodine (123I). Equilibrium melanin binding of iodinated and non-iodinated drugs was studied in vitro in order to find out if iodination affects to the binding. Melanin binding was studied in vitro also with non-binding reference salicylic acid, I2-salicylic acid and salbutamol. Finally, melanin binding of 123I-choloroquine and 123I-nadolol was studied with SPECT/CT (NanoSPECT/CT, Bioscan Inc., USA) by comparing distribution kinetics between pigmented and albino rat. Drugs were administered intravenously to the tail vena and the distribution was followed in several time points, up to 24 h. Based on in vitro study, iodination increases melanin binding of hydrophilic drugs, nadolol and salicylic acid, significantly. In vivo study showed clear accumulation of 123I-chloroquine in the posterior eye of pigmented rats whereas it was absent from albino rat. Interestingly, 123I-nadolol accumulated in to the nasal cavity of pigmented rats. Aromatic iodination changes electronegative properties of compounds and raises their logP (octanol/water partition coefficient) value affecting to the melanin binding positively. Therefore the effect of the radiotracer to the physicochemical properties of the compound and melanin binding should be determined in vitro. This study showed that SPECT/CT imaging method can be used to study melanin binding in vivo. Because the method is semi-quantitative, also a quantitative method should be incorporated to the study in order to have more powerful data. Additional studies are required for statistical analysis.