Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by master's degree program "Master 's Programme in Mathematics and Statistics"

Sort by: Order: Results:

  • Williams Moreno Sánchez, Bernardo (2022)
    The focus of this work is to efficiently sample from a given target distribution using Monte Carlo Makov Chain (MCMC). This work presents No-U-Turn Sampler Lagrangian Monte Carlo with the Monge metric. It is an efficient MCMC sampler, with adaptive metric, fast computations and with no need to hand-tune the hyperparameters of the algorithm, since the parameters are automatically adapted by extending the No-U-Turn Sampler (NUTS) to Lagrangian Monte Carlo (LMC). This work begins by giving an introduction of differential geometry concepts. The Monge metric is then constructed step by step, carefully derived from the theory of differential geometry giving a formulation that is not restricted to LMC, instead, it is applicable to any problem where a Riemannian metric of the target function comes into play. The main idea of the metric is that it naturally encodes the geometric properties given by the manifold constructed from the graph of the function when embedded in higher dimensional Euclidean space. Hamiltonian Monte Carlo (HMC) and LMC are MCMC samplers that work on differential geometry manifolds. We introduce the LMC sampler as an alternative to Hamiltonian Monte Carlo (HMC). HMC assumes that the metric structure of the manifold encoded in the Riemannian metric to stay constant, whereas LMC allows the metric to vary dependent on position, thus, being able to sample from regions of the target distribution which are problematic to HMC. The choice of metric affects the running time of LMC, by including the Monge metric into LMC the algorithm becomes computationally faster. By generalizing the No-U-Turn Sampler to LMC, we build the NUTS-LMC algorithm. The resulting algorithm is able to estimate the hyperparameters automatically. The NUTS algorithm is constructed with a distance based stopping criterion, which can be replaced by another stopping criteria. Additionally, we run LMC-Monge and NUTS-LMC for a series of traditionally challenging target distributions comparing the results with HMC and NUTS-HMC. The main contribution of this work is the extension of NUTS to generalized NUTS, which is applicable to LMC. It is found that LMC with Monge explores regions of target distribution which HMC is unable to. Furthermore, generalized NUTS eliminates the need to choose the hyperparameters. NUTS-LMC makes the sampler ready to use for scientific applications since the only need is to specify a twice differentiable target function, thus, making it user friendly for someone who does not wish to know the theoretical and technical details beneath the sampler.
  • Huynh, Inchuen (2023)
    Hawkes processes are a special class of inhomogenous Poisson processes used to model events exhibiting interdependencies. Initially introduced in Hawkes [1971], Hawkes processes have since found applications in various fields such as seismology, finance, and criminology. The defining feature of Hawkes processes lies in their ability to capture self-exciting behaviour, where the occurrence of an event increases the risk of experiencing subsequent events. This effect is quantified in their conditional intensity function which takes into account the history of the process in the kernel. This thesis focuses on the modeling of event histories using Hawkes processes. We define both the univariate and multivariate forms of Hawkes processes and discuss the selection of kernels, which determine whether the process is a jump or a non-jump process. In a jump Hawkes process, the conditional intensity spikes at an occurrence of an event and the risk of experiencing new events is the highest immediately after an event. For non-jump processes, the risk increases more gradually and can be more flexible. Additionally, we explore the choice of baseline intensity and the inclusion of covariates in the conditional intensity of the process. For parameter estimation, we derive the log-likelihood functions and discuss goodness of fit methods. We show that by employing the time-rescaling theorem to transform event times, assessing the fit of a Hawkes process reduces to that of an unit rate Poisson process. Finally, we illustrate the application of Hawkes processes by exploring whether an exponential Hawkes process can be used to model occurrences of diabetes-related comorbidities using data from the Diabetes Register of the Finnish Institute for Health and Welfare (THL). Based on our analysis, the process did not adequately describe our data, however, exploring alternative kernel functions and incorporating time-varying baseline intensities hold potential for improving the compatibility.
  • Schauman, Julia (2022)
    In this thesis, we explore financial risk measures in the context of heavy-tailed distributions. Heavy-tailed distributions and the different classes of heavy-tailed distributions will be defined mathematically in this thesis but in more general terms, heavy-tailed distributions are distributions that have a tail or tails that are heavier than the exponential distribution. In other words, distributions which have tails that go to zero more slowly than the exponential distribution. Heavy-tailed distributions are much more common than we tend to think and can be observed in everyday situations. Most extreme events, such as large natural phenomena like large floods, are good examples of heavy-tailed phenomena. Nevertheless, we often expect that most phenomena surrounding us are normally distributed. This probably arises from the beauty and effortlessness of the central limit theorem which explains why we can find the normal distribution all around us within natural phenomena. The normal distribution is a light-tailed distribution and essentially it assigns less probability to the extreme events than a heavy-tailed distribution. When we don’t understand heavy tails, we underestimate the probability of extreme events such as large earthquakes, catastrophic financial losses or major insurance claims. Understanding heavy-tailed distributions also plays a key role when measuring financial risks. In finance, risk measuring is important for all market participants and using correct assumptions on the distribution of the phenomena in question ensures good results and appropriate risk management. Value-at-Risk (VaR) and the expected shortfall (ES) are two of the best-known financial risk measures and the focus of this thesis. Both measures deal with the distribution and more specifically the tail of the loss distribution. Value-at-Risk aims at measuring the risk of a loss whereas ES describes the size of a loss exceeding the VaR. Since both risk measures are focused on the tail of the distribution, mistaking a heavy-tailed phenomena for a light-tailed one can lead to drastically wrong conclusions. The mean excess function is an important mathematical concept closely tied to VaR and ES as the expected shortfall is mathematically a mean excess function. When examining the mean excess function in the context of heavy-tails, it presents very interesting features and plays a key role in identifying heavy-tails. This thesis aims at answering the questions of what heavy-tailed distributions are and why are they are so important, especially in the context of risk management and financial risk measures. Chapter 2 of this thesis provides some key definitions for the reader. In Chapter 3, the different classes of heavy-tailed distributions are defined and described. In Chapter 4, the mean excess function and the closely related hazard rate function are presented. In Chapter 5, risk measures are discussed on a general level and Value-at-Risk and expected shortfall are presented. Moreover, the presence of heavy tails in the context of risk measures is explored. Finally, in Chapter 6, simulations on the topics presented in previous chapters are shown to shed a more practical light on the presentation of the previous chapters.
  • Karjalainen, Topias (2022)
    In recent years, there has been a great interest in modelling financial markets using fractional Brownian motions. It has been noted in studies that ordinary diffusion based stochastic volatility models cannot reproduce certain stylized facts that are observed in financial markets, such as the fact that the at the money (ATM) volatility skew tends to infinity at short maturities. Rough stochastic volatility models, where the spot volatility process is driven by a fractional Brownian motion, can reproduce these effects. Although the use of long memory processes in finance has been advocated since the 1970s, it has taken until now for fractional Brownian motion to gain widespread attention. This thesis serves as an introduction to the subject. We begin by presenting the mathematical definition of fractional Brownian motion and its basic mathematical properties. Most importantly, we show that fractional Brownian motion is not a semimartingale, which means that the theory of Itô calculus cannot be applied to stochastic integrals with fractional Brownian motion as integrator. We also present important representations of fractional Brownian motion as moving average process of a Brownian motion. In the subsequent chapter, we show that we can define a Wiener integral with respect to fractional Brownian motion as a Wiener integral with respect to Brownian motion with transformed integrand. We also present divergence type integrals with respect to fractional Brownian motion and an Itô type formula for fractional Brownian motion. In the last chapter, we introduce rough volatility. We derive the so called rough Bergomi model model that can be seen as an extension of the Bergomi stochastic volatility model. We then show that for a general stochastic volatility model, there is an exact analytical expression for the ATM volatility skew, defined as the derivative of the volatility smile slope with respect to strike price evaluated at the money. We then present an expression for the short time limit of the ATM volatility skew under general assumptions which shows that in order to reproduce the observed short time limit of infinity, the volatility must be driven by a fractional process. We conclude the thesis by comparing the rough Bergomi model to SABR- and Heston stochastic volatility models.
  • Lehtonen, Sasu (2023)
    Brennanin konjektuuri on matemaattinen hypoteesi, jonka muotoili J. E. Brennan vuonna 1978. Hypoteesissa on tarkoitus arvioida konformikuvauksen derivaatan moduulin integraalin potenssia avoimessa yksikkökiekossa. Brennan onnistui myöhemmin löytämään rajoja tälle potenssille, ja vuonna 1999 Daniel Bertilsson onnistui löytämään väitöskirjassaan lisää rajoja kyseiselle potenssille, mutta päähypoteesi pysyy avoimena. Tässä tutkielmassa esitellään määritelmiä, lauseita ja muita matemaattisia tuloksia, joita hyödyntämällä konjektuurin integraalin potenssille on onnistuttu löytämään rajoja. Johdantokappaleessa esitellään mielenkiinnon kohteena oleva matemaattinen ongelma, ja lisäksi siinä mainitaan muutama matemaattinen käsite, jotka ovat oleellisia tämän tutkielman kannalta. Nämä käsitteet ovat Koeben distortiolause, analyyttinen funktio ja universaali integraalikeskiarvojen spektri. Toisessa kappaleessa käydään läpi taustatietoja, jotka on hyvä tietää tässä tutkielmassa. Ensiksi kyseisessä kappaleessa palautetaan mieleen mikä on kompleksiluku ja kerrotaan niiden kahdesta ilmaisutavasta. Ensimmäinen tapa ilmaista kompleksiluku on ilmaista se luvun reaali- ja imaginaariosan avulla, ja toinen tapa esittää kompleksiluku on käyttämällä moduulia, siniä ja kosinia. Tässä toisessa tavassa käytetään myös kompleksiluvun argumenttia, joka on moduulin ja reaaliakselin välinen kulma. Toisessa kappaleessa esitellään myös kompleksisen differentioituvuuden ja analyyttisen funktion käsitteet, jotka molemmat ovat hyvin tärkeitä kompleksianalyysissa. Kyseisessä kappaleessa mainitaan myös Cauchy-Riemannin yhtälöt, biholomorfinen funktio ja joitain topologisia käsitteitä. Lisäksi myös siinä käydään läpi yksi kompleksiseen differentioituvuuteen ja Cauchy-Riemannin yhtälöihin liittyvä lause. Kappaleen lopussa tutustutaan myös Koebe funktioon ja yhteen lauseeseen, jossa yleistä juurifunktiota ja funktion jatkuvia haaroja. Kolmannessa kappaleessa tutustutaan S- ja Sigma- luokkiin, jotka ovat tutkielmassa käsiteltäviä kuvausluokkia. S-luokan alkiot ovat kuvauksia, jotka ovat analyyttisia ja injektioita, niiden arvo pisteessä 0 on 0 ja derivaatan arvo pisteessä 0 on 1. Sigma-luokan alkiot ovat puolestaan kuvauksia, jotka ovat analyyttisia ja injektioita sellaisten kompleksilukujen joukossa, joiden moduuli on suurempi kuin 1. Lisäksi tämän luokan funktioiden raja-arvo äärettömyyspisteessä on ääretön, ja derivaatan arvo äärettömyyspisteessä on 1. Sigma-luokan alkiot voidaan myös ilmaista suppenevana sarjana. Kappaleessa 3 käydään myös läpi Alue lause, Bieberbachin lause ja Koebe ¼- lause, ja kappaleen lopussa tutustutaan paremmin esimerkkeihin funktiosta, jotka kuuluvat kuvausluokkaan S. Neljännessä kappaleessa käydään läpi distrotiolauseita, joita ovat hyvin tärkeitä tämän tutkielman kannalta. Lisäksi kappaleessa tutustutaan Kasvulauseeseen, Yhdistettyyn kasvudistortiolauseeseen, Säteittäiseen distortiolauseeseen ja näiden todistuksiin. Viidennessä eli viimeisessä kappaleessa palataan Brennanin konjektuurin määritelmään ja käydään läpi derivaattafunktion integraalikeskiarvojen spektri ja universaali integraalikeskiarvojen spektri. Kappaleen lopussa kerrotaan myös Koebe derivaattafunktion integraalikeskiarvojen spektri.
  • Lassila, Mira (2023)
    Tutkielma keskittyy algebralliseen topologiaan ja vielä tarkemmin homologian ja kohomologian tutkimiseen. Tutkielman tavoite on todistaa Künnethin kaava tulokohomologialle, jota varten ensin esitellään homologia ja siitä johdettuna dualisaation kautta kohomologia. Homologia ja kohomologia tutkielmassa esitellään singulaarisessa muodossa. Johdannon jälkeen tutkielma aloitetaan esittelemällä kategoriateorian perusteet. Kategoria kappaleessa annetaan esimerkkejä kategorioista, joita käytetään pitkin tutkielmaa. Kategoria käsitteen esittelyn jälkeen jatketaan määrittelemään kuvaus jolla pystytään siirtymään kategoriasta toiseen eli funktorit. Funktorit jaetaan kovariantteihin ja kontravariantteihin riippuen siitä säilyttääkö se morfismien suunnan. Funktoreista esille nostetaan Hom-funktori, jonka kontravarianttia muotoa hyödyntämällä saadaan myöhemmin muodostettua kohomologia. Funktoreiden käsittelyn myötä pystytään niiden välille muodostamaan kuvauksia, jonka vuoksi esitellään luonnollinen transformaatio. Toisen luvun viimeisimpänä aihealueena käsitellään eksakteja jonoja. Toinen kappale kokoaa tarvittavat esitiedot, jotta voidaan siirtyä käsittelemään homologiaa ja kohomologiaa. Kolmas kappale käy läpi homologian ja kohomologian käsitteistöä. Homologia ja kohomologia esitellään pääasiassa singulaarisessa muodossa. Homologiasta käydään läpi peruskäsitteet, jonka jälkeen siirrytään singulaariseen homologiaan. Tässä yhteydessä määritelmään muun muassa simpleksi, jotta voidaan avata singulaarisen homologian perusteita. Singulaarisesta homologiasta edetään singulaariseen kohomologiaan, joka saadaan aiemmin esitellyn Hom-funktorin avulla homologiasta. Singulaarisen kohomologia kappaleen lopuksi esitellään vielä uusi laskutoimitus kohomologiaryhmille eli kuppitulo. Tutkielman viimeinen kappale käsittelee itse Künnethin kaavan ja sen todistuksen. Lisäksi käydään läpi muita tarvittavia esitietoja kaavan todistuksen ymmärtämiselle, jotka eivät ole vielä nousseet esille aikaisemmissa luvuissa. Tutkielma päättyy Künnethin kaavan todistukseen.
  • Kallama, Konsta (2023)
    Suomen lakisääteisissä työeläkevakuutuksissa yrittäjien ja palkansaajien eläkkeet on jaoteltu erillisiin järjestelmiin. Näiden vakuutusten ehdot ovat pitkälti samanlaiset, mutta yrittäjien järjestelmä on varsinkin viime vuosina tuottanut huomattavasti huonompaa tulosta. Yksi merkittävä tekijä eläkevakuutustoiminnan kannattavuudessa on kuolevuusmallin soveltuvuus, ja tämän tutkielman tavoitteena on selvittää, selittävätkö mahdolliset kuolevuuserot YEL- ja TyEL-vakuutusten eriävää kannattavuutta. Kuolevuuden arviointiongelman ratkaisemiseksi esittelemme tutkielman ensimmäisessä osassa yleistä selviytymisanalyysin teoriaa. Tässä määrittelemme laskuprosessien, martingaalien sekä Lebesgue-Stieltjes-integraalien avulla Nelson-Aalen-estimaattorin kumulatiiviselle kuolevuudelle. Toisessa osassa sovellamme ensimmäisen osan työkaluja Eläketurvakeskuksen vuosien 2007–2020 kuolevuusdataan. Arvioimme näin TyEL- ja YEL-vakuutuksissa käytetyn teoreettisen kuolevuusmallin soveltuvuutta sekä vakuutuskantojen kuolevuuseroja. Saamme selville, että kuolevuusmalli kuvaa hyvin toteutunutta kuolevuutta, ja että YEL-kuolevuus on maltillisesti TyEL-kuolevuutta alhaisempaa. Tärkeämpää roolia kannattavuuseron kannalta näyttelee kuitenkin ero populaatioiden ikärakenteissa.
  • McCann, Robin (2022)
    Large deviations theory is a branch of probability theory which studies the exponential decay of probabilities for extremely rare events in the context of sequences of probability distributions. The theory originates from actuaries studying risk and insurance from a mathematical perspective, but today it has become its own field of study, and is no longer as tightly linked to insurance mathematics. Large deviations theory is nowadays frequently applied in various fields, such as information theory, queuing theory, statistical mechanics and finance. The connection to insurance mathematics has not grown obsolete, however, and these new results can also be applied to develop new results in the context of insurance. This paper is split into two main sections. The first presents some basic concepts from large deviations theory as well as the Gärtner-Ellis theorem, the first main topic of this thesis, and then provides a fairly detailed proof of this theorem. The Gärtner-Ellis theorem is an important result in large deviations theory, as it gives upper and lower bounds relating to asymptotic probabilities, while allowing for some dependence structure in the sequence of random variables. The second main topic of this thesis is the presentation of two large deviations results developed by H. Nyrhinen, concerning the random time of ruin as a function of the given starting capital. This section begins with introducing the specifics of this insurance setting of Nyrhinen’s work as well as the ruin problem, a central topic of risk theory. Following this are the main results, and the corresponding proofs, which rely to some part on convex analysis, and also on a continuous version of the Gärtner-Ellis theorem. Recommended preliminary knowledge: Probability Theory, Risk Theory.
  • Kulmala, Johanna (2022)
    Työn päätarkoitus on esittää Lindemannin-Weierstrassin lause todistuksineen. Todistusta varten tarvitsemme erinäisiä tietoja algebrallisista luvuista, transkendenttisista luvuista sekä tässä työs sä Galois'n ryhmistä ja Galois'n laajennoksista. Lindemannin-Weierstrassin lauseen todistuksen jälkeen esitetään lauseesta seuraavia tuloksia. Historian saatossa matemaatikot ovat halunneet jakaa lukuja erilaisiin lukujoukkoihin, kuten kokonaislukuihin ja kompleksilukuihin. Luvut pystytään jakamaan myös transkendenttisiin lukuihin ja algebrallisiin lukuihin. Lukua kutsutaan algebralliseksi, jos se on jonkin kokonaislukukertoimisen polynomin juuri. Jos luku ei ole algebrallinen, niin se on transkendenttinen. Matemaatikkojen ongelmana oli pitkään kuinka luvun transkendenttisuus todistetaan. Lindemannin-Weierstrassin lause on ratkaisu tähän ongelmaan. Lindemannin-Weierstrassin lause on seuraava: Olkoot α1, α2, . . . , αn erillisiä algebrallisia lukuja, jotka ovat lineaarisesti riippumattomia rationaalilukujen suhteen. Tällöin luvut e^α1, e^α2, . . . , e^αn ovat algebrallisesti riippumattomia algebrallisten lukujen suhteen. Työn päälauseen avulla pystytään siis todistamaan joidenkin lukujen transkendenttisuus. Tälläisiä lukuja ovat esimerkiksi Neperin luku e ja π, joiden transkendenttisuuden todistan työn lopussa lauseen avulla. Työn päälähteessä käytetään lauseen todistuksessa Galois'n ryhmiä ja laajennoksia, minkä vuoksi käsittelen myös niitä työssäni.
  • Laukkarinen, Aapo (2022)
    In this thesis we study the article by J. Bourgain and C. Demeter called A study guide for the l^2 decoupling theorem. In particular, we hope to give an in detail exposition to certain results from the aforementioned research article so that this text combined with the master’s thesis On the l^2 decoupling theorem by Jaakko Sinko covers the l^2 decoupling theorem comprehensively in the range 2 ≤ p ≤ 2n/(n−1). The results in this text also self-sufficiently motivate the use of the extension operator and explain why it is possible to prove linear decouplings with multilinear estimates. We begin the thesis by giving the basic notation and highlighting some useful results from analysis and linear algebra that are later used in the thesis. In the second chapter we introduce and prove a certain multilinear Kakeya inequality, which asserts an upper bound for the overlap of neighbourhoods of nearly axis parallel lines in R^n that point in different directions. In the next chapter this is applied to prove a multilinear cube inflation inequality, which is one of the main mechanisms in the proof of the l^2 decoupling theorem. In the fourth chapter we study two forms of linear decoupling. One that is defined by an extension operator and one that defined via Fourier restriction. The main result of this chapter is that the former is strong enough to produce decoupling inequalities that are of the latter form. The fifth chapter is reserved for comparing linear and multilinear decouplings. Here we use the main result of the previous chapter to prove that multilinear estimates can produce linear decouplings, if the lower dimensional decoupling constant is somehow contained. This paves the way for the induction proof of the l^2 decoupling theorem.
  • Lehdonvirta, Otso (2022)
    Tutkielmassa annetaan teoreettinen oikeutus sille, että pörssiosakkeen tuotto on lognormaalijakautunut kunhan se täyttää tietyn tyyppiset ehdot. Kun oletamme, että pörssiosakkeen tuotto täyttää nämä ehdot, voimme todistaa Lindebergin-Fellerin raja-arvolauseen avulla, että silloin pörssiosakkeen tuotto lähenee lognormaalijakaumaa mitä useammin pörssiosakkeella tehdään kauppaa tarkastetun ajanjakson aikana. Kokeilemme Coca-Colan ja Freeport-McMoranin osakkeilla empiirisiesti, noudattavatko niiden pörssiosakeiden tuotot lognormaalijakaumaa käyttämällä Kolmogorovin-Smirnovin -testiä. Nämä kyseiset osakkeet edustavat eri teollisuudenaloja, joten niiden pörssiosakkeet käyttäytyvät eri lailla. Lisäksi ne ovat hyvin likvidejä ja niillä käydään kauppaa tiheästi. Testeistä käy ilmi, että emme voi poissulkea Coca-Colan pörssiosakkeen tuoton noudattavan lognormaalijakaumaa, mutta Freeport-McMoranin voimme. Usein kirjallisuudessa oletetaan, että pörssiosakkeen tuotto on lognormaalijakautunut. Esimerkiksi alkuperäisessä Black-Scholes-mallissa oletetaan, että pörssiosakkeentuotto on lognormaalijakautunut. Se miten pörssiosakkeen tuotto on jakautunut vaikuttaa siihen, miten Black-Scholes-mallin mallintamat osakejohdannaiset hinnoitellaan ja kyseistä hinnoittelumallia saatetaan käyttää yritysten kirjanpidossa. Black-Scholes-malli, jossa pörssiosakkeen tuotto on lognormaalijakautunut, esitetään tutkielmassa.
  • Karjalainen, Miko (2023)
    Predator-prey models are mathematical models widely used in ecology to study the dynamics of predator and prey populations, to better understand the stability of such ecosystems and to elucidate the role of various ecological factors in these dynamics. An ecologically important phenomenon studied with these models is the so-called Allee effect, which refers to populations where individuals have reduced fitness at low population densities. If an Allee effect results in a critical population threshold below which a population cannot sustain itself it is called a strong Allee effect. Although predator-prey models with strong Allee effects have received a lot of research attention, most of the prior studies have focused on cases where the phenomenon directly impacts the prey population rather than the predator. In this thesis, the focus is placed on a particular predator-prey model where a strong Allee effect occurs in the predator population. The studied population-level dynamics are derived from a set of individual-level behaviours so that the model parameters retain their interpretation at the level of individuals. The aim of this thesis is to investigate how the specific individual-level processes affect the population dynamics and how the population-level predictions compare to other models found in the literature. Although the basic structure of the model precedes this paper, until now there has not been a comprehensive analysis of the population dynamics. In this analysis, both the mathematical and biological well-posedness of the model system are established, the feasibility and local stability of coexistence equilibria are examined and the bifurcation structure of the model is explored with the help of numerical simulations. Based on these results, the coexistence of both species is possible either in a stable equilibrium or in a stable limit cycle. Nevertheless, it is observed that the presence of the Allee effect has an overall destabilizing effect on the dynamics, often entailing catastrophic consequences for the predator population. These findings are largely in line with previous studies of predator-prey models with a strong Allee effect in the predator.
  • Metsälampi, Lilja (2021)
    Tutkielman päämääränä on esitellä ja todistaa Milnorin lause (John Milnor, 1968) geometrisen ryhmäteorian alalta. Milnorin lause on olennainen osa äärellisesti viritettyjen ratkeavien ryhmien kasvun luokittelua. Se kertoo, että äärellisesti viritetyt ratkeavat ryhmät joko kasvavat eksponentiaalisesti tai ovat polysyklisiä. Polysyklisten ryhmien kasvun tiedetään olevan joko polynomista tai eksponentiaalista. Näin ollen äärellisesti viritetyt ratkeavat ryhmät kasvavat joko polynomisesti tai eksponentiaalisesti. Tutkielman ensimmäinen luku on johdantoa ja toinen luku on esitietoja. Tutkielman kolmannessa luvussa esitellään ryhmät ja aakkostot. Erityisesti esitellään, mitä tarkoittaa ajatella ryhmän alkioita jonkin aakkoston sanoina. Lisäksi määritellään vapaat ryhmät ja ryhmien esitykset. Tämän jälkeen neljännessä luvussa ryhmiin määritellään ryhmän Cayley graafin avulla sanametriikaksi kutsuttu metriikka. Todistetaan, että eri virittäjäjoukkojen suhteen muodostetut sanametriikat ovat keskenään bilipschitzekvivalentit. Lopulta määritellään ryhmien kasvu ja todistetaan, että ryhmän kasvu ei riipu valitusta virittäjäjoukosta. Viidennessä luvussa esitellään ratkeavat ryhmät, nilpotentit ryhmät ja polysykliset ryhmät ja muutamia konkreettisia esimerkkejä näistä ryhmistä. Lisäksi esitellään näiden ryhmien keskeisiä ominaisuuksia ja niiden välisiä suhteita. Todistetaan esimerkiksi, että jokainen nilpotentti ja polysyklinen ryhmä on myös ratkeava ryhmä. Kuudennessa luvussa todistetaan tutkielman päätulos, Milnorin lause. Se tapahtuu induktiolla ratkeavalle ryhmälle ominaisen subnormaalin laskevan jonon pituuden suhteen. Lisäksi esitellään ja todistetaan tarvittavia aputuloksia. Luvun lopussa esitellään Wolfin lause (Joseph Wolf, 1968) ja yhdistetään Milnorin ja Wolfin lauseet yhdeksi tulokseksi, Milnor-Wolfin lauseeksi. Milnor-Wolfin lauseen nojalla äärellisesti viritettyjen ratkeavien ryhmien kasvu saadaan luokiteltua.
  • Andberg, Sari (2022)
    Tutkielman aiheena ovat Möbius-kuvaukset, jotka ovat olennainen osa kompleksianalyysia ja täten edelleen analyysia. Möbius-kuvauksiin tutustutaan yleensä matematiikan syventävällä kurssilla Kompleksianalyysi 1, jonka lisäksi lukijalta toivotaan analyysin perustulosten tuntemista. Möbius-kuvaukset ovat helposti lähestyttäviä ja mielenkiintoisia ensimmäisen asteen rationaalifunktioita. Kuvauksilla on useita hyödyllisiä geometrisia ominaisuuksia ja niillä voidaan ratkaista kätevästi erilaisia kuvaustehtäviä, minkä vuoksi ne ovatkin erityisen tärkeitä. Tutkielman luku 1 on lyhyt johdatus Möbius-kuvauksiin. Luvussa 2 tutustutaan Möbius-kuvausten kannalta olennaisiin kompleksianalyysin käsitteisiin, kuten laajennettu kompleksitaso, Riemannin pallo sekä alkeisfunktiot. Kolmannessa luvussa määritellään itse Möbius-kuvaukset ja esitetään esimerkkejä erilaisista Möbius-kuvauksista. Luvussa näytetään lisäksi muun muassa, että Möbius-kuvaukset ovat bijektioita sekä konformisia, ja tutkitaan kuvausten analyyttisuutta. Luvussa 4 tutustutaan kaksoissuhteen käsitteeseen ja todistetaan Möbius-kuvausten myös säilyttävän kaksoisuhteet. Luvussa määritellään lisäksi kompleksitason erilaisia puolitasoja sekä ratkaistaan kaksoissuhteen avulla erilaisia kuvaustehtäviä tätä myös kuvin havainnollistaen. Viidennessä luvussa tutustutaan kvasihyperboliseen metriikkaan ja näytetään Möbius-kuvaukset hyperbolisiksi isometrioiksi. Aineistonani tutkielmassa on käytetty pääsääntöisesti Ritva Hurri-Syrjäsen Kompleksianalyysi 1- kurssin sisältöä. Lisäksi luvussa 5 pohjataan Paula Rantasen työhön Uniformisista alueista sekä F. W. Gehringin ja B. P. Palkan teokseen Quasiformally homogeneous domains.
  • Mäkinen, Eetu (2023)
    In this thesis, we model the graduation of Mathematics and Statistics students at the University of Helsinki. The interest is in the graduation and drop-out times of bachelor’s and master’s degree program students. Our aim is to understand how studies lead up to graduation or drop-out, and which students are at a higher risk of dropping out. As the modeled quantity is time-to-event, the modeling is performed with survival analysis methods. Chapter 1 gives an introduction to the subject, while in Chapter 2 we explain our objectives for the research. In Chapter 3, we present the available information and the possible variables for modeling. The dataset covers a 12-year period from 2010/11 to 2021/22 and includes information for 2268 students in total. There were many limitations, and the depth of the data allowed the analysis to focus only on the post-2017/18 bachelor’s program. In Chapter 4, we summarize the data with visual presentation and some basic statistics of the follow-up population and different cohorts. The statistical methods are presented in Chapter 5. After introducing the characteristic concepts of time-to-event analysis, the main focus is on two alternative model choices; the Cox regression and the accelerated failure time models. The modeling itself was conducted with programming language R, and the results are given in Chapter 6. In Chapter 7, we introduce the main findings of the study and discuss how the research could be continued in the future. We found that most drop-outs happen early, during the first and second study year, with the grades from early courses such as Raja-arvot providing some early indication of future success in studies. Most graduations in the post-2017/18 program occur between the end of the third study year and the end of the fourth study year, with the median graduation time being 3,2 years after enrollment. Including the known graduation times from the pre-2017/18 data, the median graduation time from the whole follow-up period was 3,8 years. Other relevant variables in modeling the graduation times were gender and whether or not a student was studying in the Econometrics study track. Female students graduated faster than male students, and students in the Econometrics study track graduated slower than students in other study tracks. In future continuation projects, the presence of more specific period-wise data is crucial, as it would allow the implementation of more complex models and a reliable validation for the results presented in this thesis. Additionally, more accuracy could be attained for the estimated drop-out times.
  • Kolehmainen, Ilmari (2022)
    This thesis analyses the colonization success of lowland herbs in open tundra using Bayesian inference methods. This was done with four different models that analyse the the effects of different treatments, grazing levels and environmental covariates on the probability of a seed growing into a seedling. The thesis starts traditionally with an introduction chapter. The second chapter goes through the data; where and how it was collected, different treatments used and other relevant information. The third chapter goes through all the methods that you need to know to understand the analysis of this thesis, which are the basics of Bayesian inference, generalized linear models, generalized linear mixed models, model comparison and model assessment. The actual analysis starts in the fourth chapter that introduces the four models used in this thesis. All of the models are binomial generalized linear mixed models that have different variables. The first model only has the different treatments and grazing levels as variables. The second model also includes interactions between these treatment and grazing variables. The third and fourth models are otherwise the same as the first and the second but they also have some environmental covariates as additional variables. Every model also has the block number, where the seeds were sown as a random effect. The fifth chapter goes through the results of the models. First it shows the comparison of the predictive accuracy of all models. Then the gotten fixed effects, random effects and draws from posterior predictive distribution are presented for each model separately. Then the thesis ends with the sixth conclusions chapter
  • Niemi, Ripsa (2022)
    Mental disorders are common during childhood and they are associated with various negative consequences later in life, such as lower educational attainment and unemployment. In addition, the reduction of socioeconomic health disparities has attracted both political, research and media interest. While mental health inequalities have been found consistently in literature and regional disparities in health have been well documented in Finland altogether, the question of possible variation in mental disorder inequalities during childhood among Finnish regions is not fully examined. This master’s thesis contributes to this gap in the research with a statistical perspective and use of a multilevel logistic model, which allows random variation between levels. Using register-based data, I ask whether the association between socioeconomic status and mental disorder in childhood varies between the child’s municipality of residence, and which regional factors possibly explain the differences. The second objective of this thesis is to find out whether the use of a multilevel logistic model provides additional value to this context. The method used in the thesis is a multilevel logistic model, which can also be called a generalized linear mixed-effects model. In multilevel models, the observations are nested within hierarchical levels, which all have corresponding variables. Both intercept and slopes of independent variables can be allowed to vary between the Level 2 units. Intraclass correlation coefficient and median odds ratio (MOR) are used to measure group level variation. In addition, centering of variables and choosing a suitable analysis strategy are central steps in model application. High-quality Finnish register data from Statistics Finland and the Finnish Institute of Health and Welfare is utilised. The study sample consists of 815 616 individuals aged 4–17 living in Finland in the year 2018. The individuals who are used as Level 1 units are nested within 306 Level 2 units based on their municipality of residence. The dependent variable is a dichotomous variable indicating a mental disorder and it is based on visits and psychiatric diagnoses given in specialised healthcare during 2018. Independent variables in Level 1 are maternal education level and household income quintile, and models are controlled for age group, gender, family structure and parental mental disorders. In Level 2, the independent variables are urbanisation, major region, share of higher-educated population and share of at-risk-of-poverty children. In the final model, children with the lowest maternal education level are more likely (OR=1.37, SE=0.0026) to have mental disorders than children with the highest maternal education level. Odds ratios for the household income quintile mostly decline close to one when control variables are included. Interestingly, children from the poorest quintile have slightly lower odds for mental disorder (OR=0.84, SE=0.017) compared with children from the richest quintile. Urbanisation, share of higher-educated population and share of at-risk-of-poverty children are statistically insignificant variables. Differences are found between major regions; children from Åland are more likely (OR=1.5, SE=0.209) to have a mental disorder compared with Helsinki-Uusimaa residents, whereas children from Western Finland (OR=0.71, SE 0.053) have lower odds compared to the same reference. Random slopes for maternal education are not significant, and the model fit does not improve. However, there is some variation among municipalities (MOR=1.34), and this finding defends the usefulness of the multilevel model in the context of mental disorders in childhood. The results show that mental disorder inequalities persist in childhood, but there is complexity. Although no variation in socioeconomic inequalities among municipalities is found, there are still contextual effects between municipalities. Health policies should focus on reducing overall mental health inequalities in the young population, but it is an encouraging finding that disparities in childhood mental disorders are not shown to be stronger in some municipalities than others. Multilevel models can contribute to the methodology of future mental disorder research, if societal context is assumed to affect the outcomes of individuals.
  • Sanders, Julia (2022)
    In this thesis, we demonstrate the use of machine learning in numerically solving both linear and non-linear parabolic partial differential equations. By using deep learning, rather than more traditional, established numerical methods (for example, Monte Carlo sampling) to calculate numeric solutions to such problems, we can tackle even very high dimensional problems, potentially overcoming the curse of dimensionality. This happens when the computational complexity of a problem grows exponentially with the number of dimensions. In Chapter 1, we describe the derivation of the computational problem needed to apply the deep learning method in the case of the linear Kolmogorov PDE. We start with an introduction to a few core concepts in Stochastic Analysis, particularly Stochastic Differential Equations, and define the Kolmogorov Backward Equation. We describe how the Feynman-Kac theorem means that the solution to the linear Kolmogorov PDE is a conditional expectation, and therefore how we can turn the numerical approximation of solving such a PDE into a minimisation. Chapter 2 discusses the key ideas behind the terminology deep learning; specifically, what a neural network is and how we can apply this to solve the minimisation problem from Chapter 1. We describe the key features of a neural network, the training process, and how parameters can be learned through a gradient descent based optimisation. We summarise the numerical method in Algorithm 1. In Chapter 3, we implement a neural network and train it to solve a 100-dimensional linear Black-Scholes PDE with underlying geometric Brownian motion, and similarly with correlated Brownian motion. We also illustrate an example with a non-linear auxiliary Itô process: the Stochastic Lorenz Equation. We additionally compute a solution to the geometric Brownian motion problem in 1 dimensions, and compare the accuracy of the solution found by the neural network and that found by two other numerical methods: Monte Carlo sampling and finite differences, as well as the solution found using the implicit formula for the solution. For 2-dimensions, the solution of the geometric Brownian motion problem is compared against a solution obtained by Monte Carlo sampling, which shows that the neural network approximation falls within the 99\% confidence interval of the Monte Carlo estimate. We also investigate the impact of the frequency of re-sampling training data and the batch size on the rate of convergence of the neural network. Chapter 4 describes the derivation of the equivalent minimisation problem for solving a Kolmogorov PDE with non-linear coefficients, where we discretise the PDE in time, and derive an approximate Feynman-Kac representation on each time step. Chapter 5 demonstrates the method on an example of a non-linear Black-Scholes PDE and a Hamilton-Jacobi-Bellman equation. The numerical examples are based on the code by Beck et al. in their papers "Solving the Kolmogorov PDE by means of deep learning" and "Deep splitting method for parabolic PDEs", and are written in the Julia programming language, with use of the Flux library for Machine Learning in Julia. The code used to implement the method can be found at https://github.com/julia-sand/pde_approx
  • Lohi, Heikki (2023)
    Stochastic homogenization consists of qualitative and quantitative homogenization. It studies the solutions of certain elliptic partial differential equations that exhibit rapid random oscillations in some heterogeneous physical system. Our aim is to homogenize these perturbations to some regular large-scale limiting function by utilizing particular corrector functions and homogenizing matrices. This thesis mainly considers elliptic qualitative homogenization and it is based on a research article by Scott Armstrong and Tuomo Kuusi. The purpose is to elaborate the topics presented there by viewing some other notable references in the literature of stochastic homogenization written throughout the years. An effort has been made to explain further details compared to the article, especially with respect to the proofs of some important results. Hopefully, this thesis can serve as an accessible introduction to the qualitative homogenization theory. In the first chapter, we will begin by establishing some notations and preliminaries, which will be utilized in the subsequent chapters. The second chapter considers the classical case, where every random coefficient field is assumed to be periodic. We will examine the general situation later that does not require periodicity. However, the periodic case still provides useful results and strategies for the general situation. Stochastic homogenization theory involves multiple random elements and hence, it heavily applies probability theory to the theory of partial differential equations. For this reason, the third chapter assembles the most important probability aspects and results that will be needed. Especially, the ergodic theorems for R^d and Z^d will play a central part later on. The fourth chapter introduces the general case, which does not require periodicity anymore. The only assumption needed for the random coefficient fields is stationarity, that is, the probability measure P is translation invariant with respect to translations in Zd. We will state and prove important results such as the homogenization for the Dirichlet problem and the qualitative homogenization theorem for stationary random coefficient fields. In the fifth chapter, we will briefly consider another approach to qualitative homogenization. This so-called variational approach was discovered in the 1970s and 1980s, when Ennio De Giorgi and Sergio Spagnolo alongside with Gianni Dal Maso and Luciano Modica studied qualitative homogenization. We will provide a second proof for the qualitative homogenization theorem that is based on their work. An additional assumption regarding the symmetricity of the random coefficient fields is needed. The last chapter is dedicated to the large-scale regularity theory of the solutions for the uniformly elliptic equations. We will concretely see the purpose of the stationarity assumption as it turns out that it guarantees much greater regularity properties compared to non-stationary coefficient fields. The study of large-scale regularity theory is very important, especially in the quantitative side of stochastic homogenization.
  • Luhtala, Juuso (2023)
    ''Don't put all your eggs in one basket'' is a common saying that applies particularly well to investing. Thus, the concept of portfolio diversification exists and is generally accepted to be a good principle. But is it always and in every situation preferable to diversify one's investments? This Master's thesis explores this question in a restricted mathematical setting. In particular, we will examine the profit-and-loss distribution of a portfolio of investments using such probability distributions that produce extreme values more frequently than some other probability distributions. The theoretical restriction we place for this thesis is that the random variables modelling the profits and losses of individual investments are assumed to be independent and identically distributed. The results of this Master's thesis are originally from Rustam Ibragimov's article Portfolio Diversification and Value at Risk Under Thick-Tailedness (2009). The main results concern two particular cases. The first main result concerns probability distributions which produce extreme values only moderately often. In the first case, we see that the accepted wisdom of portfolio diversification is proven to make sense. The second main result concerns probability distributions which can be considered to produce extreme values extremely often. In the second case, we see that the accepted wisdom of portfolio diversification is proven to increase the overall risk of the portfolio, and therefore it is preferable to not diversify one's investments in this extreme case. In this Master's thesis we will first formally introduce and define heavy-tailed probability distributions as these probability distributions that produce extreme values much more frequently than some other probability distributions. Second, we will introduce and define particular important classes of probability distributions, most of which are heavy-tailed. Third, we will give a definition of portfolio diversification by utilizing a mathematical theory that concerns how to classify how far apart or close the components of a vector are from each other. Finally, we will use all the introduced concepts and theory to answer the question is portfolio diversification always preferable. The answer is that there are extreme situations where portfolio diversification is not preferable.