Skip to main content
Login | Suomeksi | På svenska | In English

Browsing by Title

Sort by: Order: Results:

  • Sandström, Saana (2015)
    Manufacturing execution systems (MES) are computer systems which are used for controlling and automating manufacturing processes. They are increasingly adapted in pharmaceutical industry. Implementation solutions differ, however, and there is no single solution which would be the optimal one for all facilities. Each manufacturing facility has their unique properties and needs which have to be reflected in the implementation. A successful MES project will bring plenty of benefits such as more efficient use of resources and automated data transfer, but the roll out phase might turn to be problematic if the processes of the organization have not been analysed thoroughly enough at decision making. This creates the need for systematic analysis of possible to-be implementation scenarios which is based on the value-drivers of the organization and considers the decision from multiple viewpoints. This study presents a holistic value driver-based framework with a mathematical weighing method to allow for a systematic and scientifically justified decision for identification of the optimal implementation depth of equipment management (EQM) in MES. A Delphi study method was utilized in this study to create the framework. The framework was developed based on literature and brainstorming sessions with experts and validated by means of a Delphi questionnaire round with expert panel consisting of professionals representing the major stakeholders of MES system in a pharmaceutical manufacturing facility. Classical additive weighing method was applied to create a mathematical basis for valuation and comparison of the scenarios. The robustness of mathematical method was tested by means of a sensitivity analysis. A benchmarking survey was done to obtain information on current implementation solutions and decisions leading to current situation. The presented method not only addresses the costs but also takes into account intangible factors. Intangible factors include aspects such as good manufacturing practice (GMP) quality and user acceptance which are not directly transferable into quantitative units but are crucial both for pharmaceutical industry and the success of the implementation project. The framework describes the decision in the form of a value tree with three main branches, namely GMP, cost and process&organization which cover the main viewpoints important for the decision. The presented method also allows the weighing of different factors according to current needs of the facility and decision in question. Hence, the presented framework leads the decision maker through a systematic and comprehensive analysis of different to-be scenarios for EQM implementation. The benchmarking survey identified three major factors of a successful MES implementation, namely effort in design phase, well-defined processes and close discussion with production. The value drivers valued highest by the expert panelists were related to GMP quality. As a use case, the presented framework was applied in a parenterals clinical manufacturing facility to evaluate six different to-be scenarios and based on the results one of them was selected by the management to be implemented. The results from the use case indicate that the framework is a valuable tool in a decision making process, and encourage the further utilization of the framework in future implementation decisions.
  • Antelo, Lauri (2023)
    African medicinal plants have been used to treat symptoms of infection successfully for thousands of years. However, no antimicrobial drugs have been developed from these plants. As antibiotic resistance is increasing rapidly, these traditional African herbal medicines can be an important solution in the fight against antibiotic resistance due to their antimicrobial properties. In this research, various extracts o the leaves of Combretum adenogonium (Combretaceae) and the fruits of Piper cubeba (Piperaceae) and Xylopia aethiopica (Annonaceae) were tested for their growth inhibitory effects against Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli. Extracts were made with methanol, water, hexane, and chloroform. In addition, water and ethyl acetate extracts were separated from an 80 % methanol extract using solvent partition. All the studied plants are used for the treatment of infections and wounds in African traditional medicine. Water was used as extraction solvent since it is commonly used in African folk medicine. Both single solvent technique and sequential extraction were used. The antibacterial effects were screened using agar diffusion and microdilution methods. The interaction between an extract and an antibiotic was measured with a checkerboard method. Time-kill experiments were performed using microdilution and plate count methods. In this study, the chloroform extract of C. adenogonium leaves gave the best inhibitory effect of all studied plants against B. cereus (MIC 78.125 µg/ml). In general, B. cereus was the most susceptible of the selected bacteria against extracts and E. coli was the one with most resistance. Time-kill test showed that the antibacterial efficacy was fairly stable throughout the 24-hour period considered with few exceptions. According to checkerboard results, C. adenogonium chloroform extract and tetracycline appeared to inhibit each other's antibacterial activity against B. cereus. However, only one extract was studied in this study, and it is possible that C. adenogonium contains compounds that would have a potentiating effect on antimicrobials. In general, C. adenogonium extracts were effective against B. cereus. The extracts of P. Cubeba were particularly effective against S. aureus. X aethiopica extracts were equally effective for both B. cereus and S. aureus. Methanol extract X. aethiopica is the only extract studied that gave more than 90% inhibition against P. aeruginosa. Therefore, it could be concluded that X. aethiopica has the broadest activity range of the examined plants.
  • Silén, Heidi (2021)
    Antimicrobial resistance is a growing problem worldwide. It has been shown that more than 70% of the bacteria that cause nosocomial infections are resistant to at least one antibiotic commonly used to treat them. Two concomitant phenomena that aggravate the diarrheal disease situation, especially in developing countries, are general contamination (spread of pathogens due to unclean water, poor sanitation, and malnutrition) and resistant bacterial strains (the adverse consequences of infections increase as infections prolong). According to the WHO, foodborne diseases (FBDs) were estimated to have caused approximately 91 million people to become ill and 137,000 deaths in Africa in 2010. The number is about a third of the deaths caused by FBD worldwide. Diarrhea caused about 70% of the FBD burden. Bacteria that cause food poisoning include Bacillus cereus, Campylobacter jejuni, Clostridium botulinum, Clostridium perfringens, Cronobacter sakazakii, Esherichia coli, Listeria monocytogenes, Salmonella spp., Shigella spp., Staphylococccus aureus and Yersinia enterocolitica, some of which are discussed in more detail in this master’s thesis; antibiotics against which resistance has developed, how bacteria resist antibiotics, and the emergence of resistance in Africa. The antibiotic resistance of bacteria and the mechanisms of resistance against antimicrobial drugs are also discussed shortly. In addition to food poisoning, Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus can cause difficult-to-treat infections such as wounds. In addition, this work has first dealt with antimicrobial plant derived compounds in general and their modes of action, and then focused on compounds, fractions and extracts of species of the genera Combretum, Terminalia, Pteleopsis and Anogeissus, as well as their antibacterial effects and uses in traditional medicine. In addition, the antibacterial mechanisms of action of different groups of compounds have been discussed in more detail. This work also deals with the combination studies of some plant extracts, fractions and compounds with antibiotics. Combination studies with antibiotics have generally been studied less than the antibacterial effects alone or the effects of combinations of many plant extracts, as used in African traditional medicine. The experimental part covers, among other things, the preparation and yield determination of crude extracts (water and methanol) as well as the agar diffusion method, the microdilution method, the Time kill tests and the checkerboard method in interaction tests to determine MIC, MBC and FIC values. Due to the Covid 19 pandemic, study results were obtained only by the agar diffusion method against Bacillus cereus. The most antimicrobial extracts were extracts of species of the genus Terminalia.
  • Helenius, Satu (2014)
    The increasing microbial resistance against conventionally used antibiotics has become a worldwide problem. Plant derived compounds may have different mechanisms of action, which might reduce the resistance problem. The aim of this study was to investigate the antimicrobial activity of three African medicinal plants, Terminalia kaiserana, Terminalia sambesiaca and Combretum psidioides, belonging to the family Combretaceae. All three plant species are used for treatment of bacterial and fungal infections in African traditional medicine, but there is limited, or in the case of Terminalia kaiserana, no research on the chemical composition of these plants. Dried plant material was extracted with methanol and solvent-partition extraction was performed using chloroform, butanol and water. Chemical compositions of the fractions was examined using RP-18 thin layer chromatography. The fractions were screened for antibacterial activity against Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa using an agar diffusion method. The most effective fraction against both bacteria was the water soluble fraction of the root bark of T. sambesiaca. A microdilution method was used to determine minimum inhibitory concentration (MIC). This method was used for S. aureus, P. aeruginosa and in addition for Mycobacterium smegmatis. The method was modified for M. smegmatis to contain a smaller inoculum size in the beginning of the experiment than for the two other bacteria. The lowest MIC-values against S. aureus were given by the crude extract and water soluble fraction of the stem bark of C. psidioides and by the butanol fraction of the same plant against P. aeruginosa. The results on the antibacterial effects of the screened extracts were notable and significant. The antimicrobial activity against M. smegmatis was not as obvious as for the other tested bacteria but the choloroform fraction of the root bark of T. kaiserana and the butanol fraction of the stem bark of C. psidioides showed promising preliminary results. Separation of fractions and compounds of the root bark of T. kaiserana was performed using Lobar RP-18 column cromatography in order to investigate which fractions or compounds are responsible for the antimicrobial activity. The antimicrobial activity of the fractions was examined using the microdilution method. The most effective fraction against both S. aureus and P. aeruginosa was the fraction 2F8, which containsthe same compounds as the crude extract, but a higher concentration of polar ellagitannins which are probably responsible for the antimicrobial activity of this fraction. Also fraction 2F9 showed antimicrobial activity against P. aeruginosa. This fractions contains ellagic acid derivatives which are probably responsible for the antimicrobial activity. The crude extract of the root bark of T. kaiserana was also fractionated using RP-18 thin layer chromatography, because this method gave better separation compared to column chromatography. Due to limited time the antimicrobial activity of the TLC-fractions will be investigated in the future.
  • Aaltonen, Linda (2015)
    Parkinson's disease is a neurodegenerative disease where the nigrostriatal dopaminergic cells die gradually causing severe motor symptoms. Current treatment of the disease relieves the symptoms but does not affect the progression of the disease, nor does it have a neuroprotective effect. The most important drug for the treatment of Parkinson's disease is L-dopa, the precursor of dopamine. With long-term use, L-dopa loses its efficacy and patients start to get adverse effects. The most significant adverse effects are abnormal involuntary movements called dyskinesias. In the literature review of this thesis Parkinson's disease and its treatment is briefly described. Review focuses on the description of the brain cholinergic and histaminergic systems and their receptors along with the available studies about cholinergic and histaminergic neurotransmission in Parkinson's disease 6-hydroxydopamine (6-OHDA) rodent model. The experimental part of this thesis consisted of two different set of experiments and in both of these the dopamine neurons were destroyed unilaterally by injecting 6-OHDA into the striatum. The aim of the first experiment was to examine histamine H3-receptor antagonist JNJ-39220675 and α7-nicotinic receptor agonist PHA-543613, and their combination therapy effects on motor function and the concentrations of striatal neurotransmitters in hemiparkinsonian mice. Effects on motor function were studied two and four weeks after the 6-OHDA injection with cylinder test, the D-amphetamine-induced rotations, and the inverted grid test. After behavioral tests, mice were sacrificed and striatal neurotransmitter concentrations were determinated by HPLC. The aim of the second experiment was to examine if nicotine can relieve L-dopa-induced dyskinesias. In this experiment 6-OHDA was injected at two sites into the striatum, which was intended to produce more extensive destruction of dopaminergic neurons than in the first experiment. The extent of the lesion by 6-OHDA was verified before starting chronic L-dopa treatments with cylinder test. One month after the 6-OHDA injection, five mice were sacrificed and their striatum and substantia nigra sections were measured for destruction of dopaminergic neurons by immunohistochemical TH-staining. Chronic L-dopa treatment with benserazide was started 49‚àí63 days after the 6-OHDA injection. At the same time, mice were divided into two groups. Half of them got normal drinking water and half got nicotine water. During the chronic L-dopa treatment, development of dyskinesias was observed once a week by video tracking. The cylinder test was also done once again after starting the L-dopa treatment. In the first experiment, H3-receptor antagonist JNJ-39220675 showed promising results in improving motor function. Mice used the impaired (contralateral) paw more in the cylinder test and rotated less to the ipsilateral side in the D-amphetamine-induced rotation test than control animals two weeks after the 6-OHDA injection. Combination therapy also reduced the ipsilateral rotations but in the cylinder test it had no effect two weeks after 6-OHDA injection. Because the asymmetry in behavioural tests were caused by destroying dopaminergic neurons, balancing of the motor skills can result from decreased levels of dopamine in the intact side or from increased dopamine levels or stronger dopaminergic postsynaptic transmission in the lesion side. The results four weeks after 6-OHDA injection are not reliable because the striatal samples showed that dopamine concentrations in the lesion side were very close to that of the intact side indicating recovery from the lesion. In the second experiment, mice developed dyskinesias which were decreased with nicotine treatment. Mice also used the contralateral side paw less indicative of loss of dopamine neurons. In agreement, TH-immunostaining confirmed significant loss of TH-positive neurons. Based on these findings, the 6-OHDA injection site, the selected drug doses, and the experimental design seem to fit the evaluation of dyskinesias. The occurrence of dyskinesias and nicotine's effect on them was seen strongest in the body movements. Dyskinesias in forelimbs were minor, but the nicotine treatment decreased them also.
  • Hella, Emilia (2015)
    This review focuses on neurotrophic factors, especially CDNF, and Amyotropic lateral sclerosis (ALS). This review finds out which neurotrophic factors have been studied in clinical trials of ALS and what kind of results have been got. Neurotrophic factors are important for development and function of neurons because they prevent apoptosis of neurons. They also play role in differentiation, development and migration of neurons. It is also known that many of the neurotrophic factors have protective and restorative properties. ALS is a rare neurodegenerative disease which causes the destruction of motor neurons and leads to death in three years. The disease degenerate the upper and lower motor neurons. Symptoms are muscle weakness, muscle atrophy, cramps and problems with swallowing. At the moment there is no cure for ALS so it is important to study neurotrophic factors that could prevent the progression of the disease and perhaps to protect or repair destroyed motor neurons. This is why it is important to study potential of CDNF in ALS. The experimental part consists of three different parts. The purpose of the first part study was to determine the distribution of CDNF after intraventricular delivery at different time points. CDNF was labeled with 125I (125I-CDNF). The distribution was determined by gammacounter and autoradiography. To determine the stability of the injected 125-I CDNF we performed SDS-PAGE. The second part studied the diffusion volume of CDNF after intraventricular injection with seven wild type mice. After stereotaxic surgery CDNF-immunohistochemistry staining from coronal sections was done. The last experimental part studied the effect of single intracerebral injection of CDNF on motivation, locomotor activity, anxiety and depression with male and female mice. Light-dark box, open field, rotarod, forced swim test (FST), elevated plus maze and fear conditioning were carried out with male mice. After behavioural tests mice were sacrified for HPLC-analysis. Light-dark box and IntelliCage were carried out with female mice before c-fos staining. Gammacounter and autoradiography shows that 125I-CDNF distributes widely after intracerebroventricular injection. It spread throughout to the brain and also all the way to the spinal cord after one and three hours from injection. After 24 hours 125I-CDNF was cleared so the CDNF signal was very weak. SDS-PAGE showed the stability of radioactive CDNF. CDNF increased locomotor activity and decreased anxiety in male mice. But a statistically significant difference appeared in forced swim test and fear conditioning test. HPLC-analysis supported these results partly. CDNF also increased motivation of female mice in IntelliCage experiment. C-fos staining was observed in CDNF group and PBS group so quantitative analysis should be done from these sections so that reliable conclusions could be done. However, because CDNF distributed to spinal cord and it showed some effect on locomotor activity, motivation and depression it might be potential for ALS disease.
  • Viljakainen, Tuulikki (2019)
    Parkinson’s disease is a progressive neurodegenerative disease, in which dopamine neurons are dying in the nigrostriatal dopaminergic pathway. This causes motor symptoms such as slowness of movement, tremor, and rigidity. In addition, various non-motor symptoms appear. All currently used medicines are symptomatic, and there are no disease modifying treatment available for Parkinson’s disease. Several neurotrophic factors have shown promise in animal models of Parkinson’s disease. One of those is cerebral dopamine neurotrophic factor (CDNF) which has been studied in different animal models, including rodents and non-human primates. CDNF is a secreted protein but it is also localized in endoplasmic reticulum (ER). CDNF has two domains, N-terminal and C-terminal, which may have distinct functions. CDNF can be retained in the ER by the ER retention sequence at the end of the C-terminal domain. The C-terminal domain also has an evolutionarily conserved disulfide bridge which is crucial for the biological activity of CDNF. The exact mechanism of CDNF is still unknown. However, it has been shown that CDNF affects the unfolded protein response (UPR) in the presence of ER stress. Neurotrophic factors do not penetrate blood-brain barrier (BBB), for this reason, they need to be injected directly to the brain. Penetration of the BBB is also a problem in the treatment of many other diseases. Various methods for enhancing the BBB penetration of drugs have been studied. For example, permeability of the BBB can be temporarily increased by focused ultrasound combined with microbubbles. Another possibility is the use of a carrier molecule, which can be transported through BBB via specific transport mechanisms. Furthermore, molecule modification offers many applications to achieve enhanced BBB penetration. In view of peripheral administration, a next generation variant of CDNF (ngCDNF) has been developed. The efficacy of this novel variant after intrastriatal injection is equal to that of CDNF in a 6-hydroxydopamine (6-OHDA) rat model of Parkinson’s disease. Systemic administration could also enable treatment of non-motor symptoms of Parkinson’s disease. The aim of this experiment was to study the effects of subcutaneously injected ngCDNF on rotation behaviour, and nigrostriatal TH-positive cells in rats with 6-OHDA lesions. 6-OHDA was injected unilaterally to three different sites in the striatum. Two weeks later, the lesion size was estimated, via amphetamine- induced rotation test. ngCDNF, at two dose levels, was injected twice weekly for three weeks. Amphetamine-induced rotation test was assessed every other week, until week 12. At the end, optical density of tyrosine hydroxylase (TH) was measured from sections of the striatum, and TH positive cells in the substantia nigra were counted. In addition, the effect of ngCDNF on anxiety and depression like behaviour, learning, and locomotor activity were studied at three different levels in naïve mice. Behaviour was analyzed by open field test, forced swim test, and fear conditioning test. The ngCDNF did not seem to have clear effect on rats’ behaviour or TH positive cells and fibers compared to the control group, but positive tendency was found in the group with lower dose. The reduced efficacy of ngCDNF,via subcutaneous administration, is likely due to rapid metabolism and insufficient entry of the active form to the brain. In naïve mice, ngCDNF did not reduce anxiety-like behaviour and did not affect locomotor activity after subcutaneous injections. This result supports previous findings, which suggest that the effects of CDNF are specific to the toxin treated cells and CDNF has no effect in naïve animals.
  • Toivonen, Laura (2021)
    Abstract Faculty: Faculty of Pharmacy Degree programme: Master of Science in Pharmacy Study track: Social pharmacy Author: Laura Toivonen Title: Deficiencies and risks related to medication use management in nursing homes identified by Regional State Administrative Agencies during their inspection visits Level: Master´s thesis Month and year: November 2021 Number of pages: 94+7 (appendice) Keywords: Medication safety, medication use process, nursing home, older adult, risk management, guidelines for safe medication practices Supervisor or supervisors: M.Sc. Pharm, PhD student Suvi Hakoinen, University of Helsinki, Keusote; Professor, PhD Marja Airaksinen, University of Helsinki Where deposited: ethesis.helsinki.fi Additional information: Abstract: Nursing home residents are often characterized by older age, multimorbidity and polypharmacy. Medication safety has become an issue as part of client/patient safety in nursing homes in Finland. Still, little is known about medication safety risks and their management in this care context. The aim of this study was to identify deficiencies and risks associated with medication use management in nursing homes using inspection visits by the Regional State Administrative Agencies (AVIs) as a data source. In addition, the aim was to evaluate what issues the AVI-authorities pay attention to in the medication use management during their inspection visits in nursing homes. The data consisted of the latest inspection reports (n = 24) prepared by the Regional State Administrative Agencies (n = 6) on the basis of their nursing home visits (nursing homes for older people). The data were analysed by deductive content analysis methods. In addition to qualitative documentary analysis, quantitative indicators were used to illustrate the frequency of the risks and deficiencies -observed in different phases in the medication use process to identify phases posing risks most commonly. Reason´s system-based risk management theory was applied as a theoretical framework for the study. A total of 372 deficiencies and risks related to medication use process were identified from the inspection reports (n = 24) of Regional State Administrative Agencies. The largest proportion (58,9 %, n = 219) of the deficiencies and risks concerned the management and quality management of the medication use process. Particularly, deficiencies and risks related to lack and competence of personnel were emphasized. Deficiencies and risks were also identified in the self- assessment guidelines for safe medication practices used in the inspected nursing homes. The second highest number of risk observations (26,9 %, n = 100) was reported for ordering, delivery and storage of medicines. In particular, the deficiencies and risks were reported for the storage and warehousing practices. Reported risk observations in other phases of the medicines use process were rare. This study showed that the medication use process in Finnish nursing homes includes deficiencies and risks endangering the safety of the older nursing home residents. In order to manage the risks, both self-assessment and inspection practices by the authorities need development. One way to improve and harmonize both self-assessment and inspection practices could be use of a comprehensive checklist covering of all the relevant issues required for the safe medication practices in nursing homes. Increasing collaboration with pharmacists could also be a way to improve medication safety in nursing homes.
  • Kärkkäinen, Krista (2021)
    Medication errors due to infusion pump programming errors are common in neonatal intensive care units and often lead to overdoses of medicines. Medication errors can be prevented with dosing limits set into the smart infusion pump drug library. However, alert fatigue caused by unnecessary alarms has been identified to hinder their use. To ensure the benefit of dosing limits as a defence of intravenous medication process, the aim of this study was to define the dosing limits to the drug library for certain high alert medications, and to pilot them in the neonatal intensive care unit. The study was based on the theoretical framework of preventive medication risk management. Based on the results, the suitability of the dosing limits for the use of the unit and the patient group was assessed. This mixed method study employed register-based research methods. The research data consisted of the infusion rate related medication errors (n=21) reported to the HUS HaiPro-system between January 2018 and December 2019 in the HUS Neonatal Intensive Care Unit. The data was analysed qualitatively and quantitatively to describe the infusion rate related errors, and to identify their mechanisms and contributing factors. Based on the identified mechanisms of the errors, simulated test patient cases were developed. Dosing limits were defined by a multidisciplinary expert group for certain high alert medications, and their suitability for preventing medication errors was investigated by programming infusion pumps according to the test patient cases and analysing the pump alerts. Based on the identified mechanisms of infusion rate-related medication errors (n=21) in the HaiPro-reports, 2-, 5-, and 10-fold infusion rates as well as mixing of infusion rates between medicines were established as test patient cases. As a result of the tests (n=226), the infusion pumps did not alert when programming normal infusion rates (n=32) and 73% (n = 70/96) of the erroneous 2-, 5-, and 10-fold infusion rates were prevented. 10-fold infusion rates were inhibited in all cases (n=32). Interference of infusion rates between medicines was prevented in 24% (n=24/98) of the cases. According to this study, significant infusion rate related medication errors can be prevented in the neonatal intensive care unit with the multidisciplinarily defined dosing limits set in the infusion pump drug library. However, they do not prevent all the infusion rate related medication errors alone, and therefore additional defences are needed. In addition to the neonatal intensive care unit, the method used in this study to define and test the dosing limits may be applied in other pediatric units in the future. By using this method, the suitability of the dosing limits for the use of the unit and the patient group can be ensured before integration of the barrier and thereby promote the benefits of its use. The suitability of the dosing limits set into the infusion pump drug library should be assessed again after implementing the defence into the neonatal intensive care unit.
  • Vähä-Kouvola, Saana (2011)
    Literature review: There is a need for new disease modifying therapies for Alzheimer disease. In order to develop these, animal models with better Alzheimer disease pathology are required. Old rat models like giving scopolamine or MK-801 or using aged rats don't have many of the characteristics of Alzheimer disease although they diminish cognitive functions in different models. Newer models like transgenic and Aβ-injected or -infused rats have much more analogy to the pathology of Alzheimer disease - at least when Aβ-pathophysiology is concerned. Taupathophysiology however doesn't occur in either of the models. On the other hand Aβ has a bigger role in the pathophysiology of Alzheimer disease so it's more important to have that in both models. These two models seem to be quite similar in modelling the disease. Injecting or infusing Aβ to the brain of the rat may be easier to conduct in practice than to create a transgenic rat line. However in transgenic rats Aβ-pathophysiology is developed intracellularly like in Alzheimer disease instead of giving aggregated Aβ outside of the brain. Still both of the models can be used as well to study new therapies especially affecting Aβ-pathophysiology. Experimental part: The purpose of the study was to validate elevated plus-maze (EPM) as a cognition model with a Trial1/Trial2-protocol (T1/T2) in mice. In this experiment a-five-minute-trial was used and thus different parameters related to cognition were measured. The memory of the mice was tried to be disrupted with time delay (1-18 d) between trials or with muscarinic receptor antagonist scopolamine (0.1-0.8 mg/kg i.p.) 30 minutes pre-T1. These experiments were conducted in C57BL/6J- and ICR:(CD-1)-mice. The only group in the time interval experiment that had a trend of forgetting was the 18 d group of ICR:(CD-1)-mice. Thus 21 d interval was also studied, but clear signs of forgetting couldn't be seen. Scopolamine didn't disrupt memory in ICR:(CD-1)-mice but in C57BL/6J-mice it did significantly with doses 0.2-0.8 mg/kg. Based on this 0.2 mg/kg was selected to be used in further studies in C57BL/6J-mice. In this model the nootropic effects of donepezile (0.3, 0.8 and 1.5 mg/kg s.c.), memantine (5.0 and 10.0 mg/kg s.c.) and an experimental 5-HT6-antagonist SB742457 (1.5 and 6.0 mg/kg s.c.) were studied. These compounds were allocated 40 minutes pre-T1 and scopolamine 30 minutes pre-T1. Memantine (5.0 mg/kg) clearly and donepezile (1.5 mg/kg) with a strong trend enhanced cognition disrupted by scopolamine. These results suggest that EPM can be used when testing nootropic effects.
  • Holma, Paula (2011)
    Metabolomics is a rapidly growing research field that studies the response of biological systems to environmental factors, disease states and genetic modifications. It aims at measuring the complete set of endogenous metabolites, i.e. the metabolome, in a biological sample such as plasma or cells. Because metabolites are the intermediates and end products of biochemical reactions, metabolite compositions and metabolite levels in biological samples can provide a wealth of information on on-going processes in a living system. Due to the complexity of the metabolome, metabolomic analysis poses a challenge to analytical chemistry. Adequate sample preparation is critical to accurate and reproducible analysis, and the analytical techniques must have high resolution and sensitivity to allow detection of as many metabolites as possible. Furthermore, as the information contained in the metabolome is immense, the data set collected from metabolomic studies is very large. In order to extract the relevant information from such large data sets, efficient data processing and multivariate data analysis methods are needed. In the research presented in this thesis, metabolomics was used to study mechanisms of polymeric gene delivery to retinal pigment epithelial (RPE) cells. The aim of the study was to detect differences in metabolomic fingerprints between transfected cells and non-transfected controls, and thereafter to identify metabolites responsible for the discrimination. The plasmid pCMV-β was introduced into RPE cells using the vector polyethyleneimine (PEI). The samples were analyzed using high performance liquid chromatography (HPLC) and ultra performance liquid chromatography (UPLC) coupled to a triple quadrupole (QqQ) mass spectrometer (MS). The software MZmine was used for raw data processing and principal component analysis (PCA) was used in statistical data analysis. The results revealed differences in metabolomic fingerprints between transfected cells and non-transfected controls. However, reliable fingerprinting data could not be obtained because of low analysis repeatability. Therefore, no attempts were made to identify metabolites responsible for discrimination between sample groups. Repeatability and accuracy of analyses can be influenced by protocol optimization. However, in this study, optimization of analytical methods was hindered by the very small number of samples available for analysis. In conclusion, this study demonstrates that obtaining reliable fingerprinting data is technically demanding, and the protocols need to be thoroughly optimized in order to approach the goals of gaining information on mechanisms of gene delivery.
  • Silén, Jenna (2021)
    The life cycle of Chlamydia pneumoniae is a biphasic developmental cycle, as a obligate intracellular bacterium, it forms various morphological forms, including elementary bodies, reticulate bodies and aberrant bodies belonging to a persistent form. Due to the bacterial life cycle and the fact that chronication of C. pneumoniae infection and formation of persistent infection as well as pathogenesis is a complex problem involving multiple signaling pathways and affecting several different cells, it is useful to seek medication to influence infection from different stages of the bacterial life cycle. There are several different factors that induce persistence and thus models of persistence. Although the detection of aberrant RBs and thus aberrant bodies in C. pneumoniae infected tissues does not provide complete certainty about chronic infection, the bacterium has been linked to chronic health problems such as atherosclerotic cardiovascular disease and asthma. The aim of the study was to develop a persistence model induced by beta-lactam antibiotics, amoxicillin and penicillin G, in A549 cells by monitoring the size, shape, and number of inclusions using the IPA method and the immunofluorescence staining method for infection. In addition, the antibiotic sensitizing effect of three compounds on pulmonary chlamydial infection was studied. This effect was monitored by examining the recovery of persistent infection and by monitoring the protective effect of the compounds on beta-lactam-induced persistence. The work succeeded in finding an infection model that is well suited for studying beta-lactam persistence. Due to treatment recommendations, pulmonary chlamydial infections are practically treated with beta-lactam antibiotics. Based on the methods used, it was found that amoxicillin concentrations of 10 and 25 µg/ml and penicillin G concentrations of 100 U/ml and 250 U/ml were sufficiently effective to transfer bacteria to a state of persistence. It was found that the amoxicillin persistence model is reversible based on the increase in the size of the inclusions, especially at 25 µg/ml and quantitatively at 10 µg/ml. It was concluded that amoxicillin at a concentration of 10 µg/ml is sufficient to induce persistence in a beta-lactam antibiotic-induced persistence model. Further quantitative studies on the persistence model are needed, such as quantitative PCR based on the OmpA gene to determine more accurate dose-response relationships. Glutathione levels should also be monitored in the persistence model.
  • Pietarinen, Teemu (2012)
    Solid materials can exist in two major forms: in crystalline or amorphous form. Amorphous form is defined as no long term order existing in solid structure in molecular scale. Amorphous materials have different physicochemical properties compared crystalline forms of same substance. Amorphous materials doesn't have sharp melting point as crystalline materials. When heated above so called glass transition temperature amorphous materials become rubbery (plasticization) and when cooled below they become glassy (hard and brittle). Amorphous forms can also have different dissolution properties which makes them useful in formulation of poorly soluble drugs. Amorphous forms are less stable compared to crystalline form. That's due amount of free energy stored in it's structures. Amorphous materials can be manufactured in many ways including quench cooling, hot-melt-extrusion, spray drying and lyophilisation (freeze drying). In experimental section effect of grinding method in properties of amorphous indomethacin was studied. Amorphous indomethacin was prepared by quenching of melt in liquid nitrogen. Properties of amorphous indomethacin was studied by x-ray powder diffraction and differential scanning calorimetry. Measurements were performed in different time stamps varied form 0 to 92 days. Measured properties were crystalline content, glass transition temperature, change in heath capacity, heat of crystallization, heat of melting and melting points of crystallized forms. Calorimetry data was recorded only from totally amorphous samples. It can be seen in results that different patches are not comparable statistically but when comparing room temperature ground and liquid nitrogen ground samples to each other differences can be found in every set. Difference is observed in initial time of crystallization (time when crystallinity can be measured first time) and in thermodynamical properties such as change in heat capacity, glass transition temperature and heat of melting. Solid dispersions of indomethacin and xylitol were prepared in 3 different compositions (5%, 10% and 20% xylitol in indomethacin). XRPD and DSC data were measured at different time stamps (aged 1 to 63 days). 5% and 10% dispersions found to be stabile and being amorphous in all time stamps. 20% dispersion was already partly crystallized at 63 days (especially liquid nitrogen ground sample).
  • Mikkonen, Heidi (2014)
    One way to improve the solubility of a poorly-water-soluble drug is to make amorphous solid dispersion of it with one or several carrier polymers. However, the amorphous solid dispersions are often unstable. Stability and amorphisation of drug substance depend on e.g. the miscibility of the components in dispersion. Moreover, in the early stage of drug development there is available only limited amount of active substance and time to the analyses. In this study, the primary goal was to develop a method combining the preparing (solvent method) and the analyzing (MTDSC, modulated temperature differential scanning calorimetry) methods. In the method developing part, the possible effect of analyzing parameters of MTDSC to the results was also tested. Amorphous solid dispersions were prepared and analyzed with the invented method. The dispersions were made of poorly-watersoluble itraconazole with hydroxypropylmethylcellulose acetate succinate (HPMC-AS) and/or polyvinylpyrrolidone (PVP K30). X-ray powder diffraction (XRPD) and polarized light microscopy (PLM) were also used to make the interpretation of results easier and more reliable. By analyzing the prepared dispersions the differences in the miscibilities of the used polymers with itraconazole were examined and it was also studied how the miscibility affected to the amorphicity of the prepared dispersion. As a secondary goal, it was tested if combining the two polymers would improve the miscibility and amorphicity of the prepared dispersion. In many cases, with the developed method it was possible to make mixed and amorphous solid dispersion with 10-20 % itraconazole concentration. Used small amount of drug was roughly enough to the detection limit of the used analyzing techniques. The analyzing parameters of MTDSC were not seen to affect to the results in this study which makes the use of this method easier. The results of used analyses were in some part contradictory and that is why it is recommended to use several analyzing techniques or methods that combine different kinds of techniques. In the study, it was seen that in the most part of the prepared dispersions there was more HPMC-AS than PVP K30. This was speculated to be caused by the ionic bonds between the basic itraconazole molecules and acidic succinyl groups in HPMC-ASs and also because of more hygroscopic nature of PVP K30 which increases mobility which in turn increases probability of collision of itraconazole molecules. The use of two polymers in the same time was useful especially in the case of 90/10 HPMC-AS/PVP K30 polymer ratio. This was speculated to be caused by different vaporization rates of the used solvents (DCM and methanol) and too slow evaporation phase. To explain and examine this observation more thoroughly, nuclear magnetic resonance (NMR) -measurements were done. When analyzing the prepared dispersions and itraconazole alone, it was observed that with used amorphisation method (solvent method) itraconazole was in a form that differs from the original polymorph. This form of itraconazole was probably some kind of liquid crystal and was examined further by heating the sample and analyzing it by XRPD. Although there are some other studies to support this hypothesis, this interpretation needs some confirmatory analyses with other methods: with high temperature SAXS (small angle X-ray scattering) and NMR.
  • Kiuru, Karoliina (2015)
    Today, many of the new drugs are poorly soluble in water, which can be a problem in the drug development. Solid dispersion is a formulation technique, which improves the dissolution rate of the drug. However solid dispersions, where the drug is in amorphous form, are often unstable. Because of that, solid dispersions, where the drug is in crystalline form, have been developed. Drug crystallization and factors affecting to the crystallization, such as amount of the polymer, are important to examine to be able to develop better drug products. Different kinds of mathematical models, which describe the kinetics of crystallization, has been developed to help to understand the crystallization event more comprehensively. In this study, the crystallization of the amorphous drug, in the absence of polymer and with a low polymer concentration, was investigated. The crystallization was also examined using a mathematical model designed to determine the kinetics of crystallization in order to find out does it work in this case. A model drug was felodipine and polymers used in this study were HPMCAS-LF and PVP K30. The concentration of polymers in the solid dispersions was 10% and 20%. It was found that a small amount of polymer has a very significant effect on crystallization rate of felodipine. Mathematically defined crystallization rate constant k increased by 13 times, when the amount of PVP was decreased 20 % to 10 %. The polymer concentration also had an effect on nucleation time which is the time before crystallization occurs. For example in the solid dispersion, where PVP concentration was 10 %, the nucleation time was five times slower and 20 % PVP consentration ten times slower than felodipine alone. The work also showed that HPMCAS stabilizes the amorphous state of felodipine better than PVP at 40 ° C / 75% RH conditions. This was observed in both MTDSC-measurements and the polarizing light microscopy. The difference between polymers was thought to be due to weakening of the interactions between PVP and felodipine by the influence of water in humid conditions. However, the different formulations had no significant effect on dissolution characteristics of felodipine. There is a possibility that felodipine crystallizes at the beginning of dissolution. It should be noted that mathematical method tested was not able to model crystallization kinetics properly in this study. So care should be given, when using a mathematical model in the product development.
  • Peltola, Roosa (2020)
    Amyotrophic lateral sclerosis (ALS) is a rare fatal neurodegenerative disease in which both the upper and lower motor neurons degenerate. Pathological features of the disease include misfolded proteins and accumulations in the central nervous system. The molecular mechanisms of the disease include neuroinflammation, glutamate induced excitotoxicity, and endoplasmic reticulum stress (ER-stress). Numerous genetic defects have been identified in the background of ALS, the most common mutations are in the C9ORF72, SOD1, TDP43 and FUS genes. For each gene mutation, it is important to develop a reliable animal model of ALS for studying pathology and testing new therapies. The most common and most recently found gene mutation, the C9ORF72 repeat expansion mutation, does not yet have an established animal disesase model. The molecular mechanisms of the disease include neuroinflammation, glutamate induced excitotoxicity, and endoplasmic reticulum stress (ER- stress). There is no drug treatment to cure or slow ALS, so the need for new drug therapies that affect the course of the disease is significant. Cerebral dopamine neurotrophic factor (CDNF) protects and restores dopamine neurons and controls ER-stress in preclinical models of Parkinson’s disease. CDNF has also been shown to improve motor coordination as well as protect spinal cord neurons from cell destruction in ALS genetic SOD1- G93A mouse and TDP-43M337 animal models. The purpose of this master's thesis study was to characterize the changes related to neurodegeneration and neuroinflammation in the new C9ORF72-500 disease model and study ER stress of the SOD1-93A disease model and the effect of CDNF on ER stress in SOD1-model and on inflammation in C9-model. In the first sub-study, brain sections from C9ORF72 transgenic and wild-type mice at different time points were subjected to six different immunohistological stainings. The results were compared at each time point (30, 70 and 170) between the wild type and the transgenic group. In another sub-study, spinal cord sections from CDNF snd vehicle treated SOD1- G93A mice were subjected to immunofluorescence staining, after which the intensity of their ER stress marker, GRP78, was analyzed using a confocal microscope. GFAP stained brain sections from CDNF and vehicle treated C9ORF72 mice were analyzed using microscope and imaging analyses. The results of the first sub-study showed neuroinflammation at 24 weeks timepoint in the transgenic group compared to wild-type mice. Pathological features of C9-ALS, various protein accumulations, were observed only in the transgenic group, mainly at 24 weeks. No neuronal loss was observed in this study. The obtained results support the previously published research results and support the reliability of the studied disease model. In the second sub-study ER stress levels were higher in SOD1-mice compared to wild-type mice. Single intracerebroventrical CDNF injection reduced ER stress in SOD1-G93A transgenic mice almost to the same level as ER stress in wild-type mice. CDNF treatment also showed a tendency for reducing inflammation in hippocampus and motor cortex of C9ORF72 mice. The results confirm the pathological role of ER stress in ALS and show that CDNF reduces ER stress when administered as early in the disease as possible, when neuronal damage begins to occur but does not yet lead to neuronal destruction. CDNF appears to be a promising drug candidate for the treatment of ALS and should therefore be further investigated.
  • Pykälämäki, Matias (2023)
    Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by the death of nigrostriatal dopaminergic neurons and formation of intraneuronal protein aggregates called Lewy bodies and Lewy neurites. These inclusions consist of a protein called α-synuclein (aSyn) but also of other proteins, lipids and cell organelles. Progressive cell death leads to nonmotor and motor symptoms. Current therapies for PD are symptomatic and do not modify the disease progression. Therefore, there is a need for the development of therapies attenuating the neurodegeneration. The pre-formed fibrils (PFF) model enables studying of aSyn aggregation and mechanisms behind inclusion formation. The PFF model is based on the exogenous aSyn fibrils’ tendency to result in formation of Lewy body -like inclusions when added in cell culture or in animals. Primary neuronal cultures of mice and rats have typically been used to model aSyn aggregation in vitro with the PFF model. Primary neuronal cultures provide practicality and are able to depict relevant features of dopaminergic neurons. To gain insight about the composition of E13.5 primary embryonic mouse midbrain culture and to enable adaptation of an existing protocol to study other cell types, this study identified and quantified several relevant cellular phenotypes in the micro island culture. The cells were fixed on day in vitro (DIV) 8 or DIV 22 and analysis was conducted using fluorescent immunocytochemistry combined with automated image analysis software, CellProfiler. On DIV 8, tyrosine hydroxylase -positive dopaminergic neurons represented 5 % of the total cells in the culture. Neuronal nuclear antigen -positive neurons resulted representing 30 % of the total cells. Gabaergic neurons were identified to be abundant in the culture and certain dopaminergic neurons were identified as immunoreactive for GABA. Choline acetyltransferase -positive cholinergic neurons were also identified to be present in the culture. The number of oligodendrocyte precursors (OPCs) was observed to be significantly smaller than the number of dopaminergic neurons. OPCs represented around 1 % of the culture on DIV 8. Glutaminergic neurons, parvalbumin-positive interneurons, microglia or astrocytes were not identified in the culture on DIV 8. The number of astrocytes was observed to increase as the incubation time was prolonged to DIV 22. Overall these findings provide valuable insights of the composition of cell phenotypes in E13.5 mouse midbrain culture. The results also provide additional validation for suitability of the original protocol to robustly produce midbrain dopaminergic cultures with minimal number of glial cells. Understanding more about the relevance and interplay of different cell phenotypes in PD pathophysiology can provide valuable insight for the development of potential therapeutic strategies.
  • Selin, Markus (2012)
    This thesis is constructed as a part of a larger research project aiming to increase understanding of polyketone reductases (PKR) and develop applications from them. PKRs are enzymes in biosynthetic pathways leading to several aromatic secondary metabolites in plants. The previous work in the research group has led to establishment of several callus cultures from plants belonging to the genus Rubus in the family Rosaceae. The aim in the experimental part of this thesis is the identification and semi-quantitation of raspberry ketone (RK) and related aromatics in the cell suspension cultures initiated from the previously established callus cultures. RK is biosynthetically produced by reduction of p-hydroxybenzalacetone (p-OH-BA) by benzalacetone reductase (BAR). As a part of the experimental work, p-OH-BA has to be chemically synthetized and analysed. Special emphasis is placed to experiment, develop and validate an extraction method for phenolic compounds using ASE 200 working station. In the review part of this thesis, the basic procedures of chemical analysis are described, optimization and validation of analytical methods are discussed, and lastly studies related to raspberry ketone (RK) are summarized. The detection limit is 0.73 µg/ml for RK with the established UPLC-UV method, and the quantitation limit (QL) is 2.22 µg/ml. At the QL, the standard deviation of the extraction method is 8.9 % and the results are 6.4 % higher than expected. At the high end of the standard curve the extraction results are 18.7 % higher than expected. Some changes are proposed to optimize the method. Analysis of the cell line extracts with the established UPLC-UV method did not readily reveal any of the studied compounds. Although the interpretation of the results of the MS experiment is still underway, RK was detected from the arctic bramble cell line Ra15. Also, a possible derivative of zingerone was detected from cloudberry cell line extract even without the corresponding standard compound. This shows the power of the MS in metabolite profiling, and gives a course for future studies.
  • Leinoluoto, Otto (2023)
    Diseases of the posterior eye segment, such as age-related macular degeneration (AMD), diabetic retinopathy, diabetic macular edema and glaucoma are the leading cause of blindness worldwide. Current therapy to treat these vision-threatening diseases relies on intravitreal injections to maintain a desired therapeutic drug concentration in the back of the eye. Frequent intravitreal injections are uncomfortable with poor patient compliance and causes major burden to the healthcare systems as well as to the patients. Small molecule drugs have shorter half-life in the vitreous and are eliminated rapidly. This requires frequent intravitreal dosing intervals that are not feasible in the clinical settings. Also, intravitreally injected small molecule drugs are often poorly and non-specifically distributed to the ocular tissues causing adverse effects. To address these issues, controlled and sustained drug delivery systems in the form of drug conjugates are desirable. Conjugating small molecule drugs with enzymatically cleavable peptide linkers increases the residence time in the vitreous. The peptide linker gets cleaved by vitreal enzyme and the released drug reaches the target in retina and choroid. Aim of this thesis was to screen a library of 25 peptide linkers for cleavage in the presence of porcine vitreal enzymes. The peptide linkers were chemically synthesized and the in vitro stability of the peptide linkers were studied in freshly isolated porcine vitreous. Ten time point samples were collected over a period of 45 days and the peptide cleavage in porcine vitreous was assessed by LC-MS method. A TQ-S liquid chromatography-mass spectrometer was used to study the linker cleavage. LC-MS method development for the peptide library was carried out using IntelliStart wizard function. Out of the 25 peptide linker in the library, stability of eight linkers were not included in the LC-MS analysis as a mass method could not be developed. Out of 17 peptide linkers studied, 14 were categorized as fast cleaving linkers (>90% of the linker cleaved in porcine vitreous after 5 h). Three linker peptides; P4, P5 and P25 were categorized as slow cleaving linkers. Conjugating slow cleaving peptide linkers to small molecule drugs will increase the half-life and enhance the duration of drug action upon intravitreal injection. In this study, linkers that are hydrolyzed by specific enzymes present in vitreous or ocular tissues are exploited to investigate their potential for delivering small molecule drugs.
  • Takala, Hanna-Elina (2020)
    Monoclonal antibodies (mAbs) are widely used in the treatment of several diseases such as cancer and autoimmune diseases. Due to their high prices and growing consumption, therapeutic mAbs have become potential targets of falsification. This generates a demand for quick and efficient analytical procedures for identifying and characterizing mAbs in a case of suspected falsification. The structure of therapeutic mAbs consists of human or murine IgG framework, where unique complementarity determining regions (CDRs) are engineered with different recombinant techniques. Given the complex nature of the mAbs, they must be identified using multiple complementary analytical methods. Ten full-sized therapeutic mAbs, Fab-fragment abciximab and CTLA4-Fc-fusion protein belatacept were studied in order to find analytical methods for efficient characterization and identification. All studied antibodies were characterized by their charge and molecular weight by isoelectric focusing (IEF) in polyacrylamide gels, native and reduced SDS-PAGE, and size exclusion chromatography (SEC). Six mAbs, abciximab and belatacept were digested with trypsin, and the cleaved peptides were further analysed by RPLC-MS. In addition, quantification methods including SEC peak area measurements and Bradford protein assay were performed for all antibodies. As expected, SDS-PAGE of non-reduced and reduced mAbs gave little distinction between the mAbs. Both methods were however shown to be useful in the identification of the mAb nature, as they confirmed the presence of heavy chains, light chains, and disulfide bonds. IEF showed potential in mAb identification, as clear, partly distinguished patterns of charge variants were obtained. However, some improvements to the pH gradient are needed to enable better separation and pI estimation of basic variants. Determination of molecular size with SEC was found to be difficult, as there seemed to be no consistency between the calculated molecular weights based on measured elution times, and the theoretical molecular weights. Nevertheless, SEC brings added value in mAb quantification and detection of protein aggregation and fragmentation. Finally, RPLC-MS analysis of tryptic peptides resulted in mAb identification, with the measured sequence coverage of 87-97 %. Identification process may be enhanced by focusing on the known CDR-peptides prior the constant frame peptides. Given the structural similarity of therapeutic mAbs, identification of an unknown mAb requires combination of multiple analytical methods. If available, the use of reference mAb product obtained from a reliable source is recommended, as the identification may be based on comparative analyses using simpler analytical steps, e.g. IEF, SDS-PAGE and SEC. If no reference product is available, identification of the mAb requires peptide mapping and determination of the CRD sequences by RPLC-MS analysis. Further research is needed to find a suitable set of analytical methods for identification of all therapeutic mAbs.